## Question 1


$\oint \vec{B} \cdot d \vec{l}=\mu_{0} I_{e n c}$
The diagram above is formed by taking an infinite wire with radius $R_{1}$ and current $I_{1}$, subtracting an infinite wire of radius $R_{2}$ and current $I_{2}$, which has its centre $d$ away from the point $P$. So the magnetic field at the centre is
$B_{P}=B_{R_{1}, P}-B_{R_{2}, P}=0-\frac{\mu_{0} I_{2}}{2 \pi d}=-\frac{\mu_{0} I_{2}}{2 \pi d}$
Where $I_{2}$ is the supposed current which flows through a wire of radius $R_{2}$. We assume the current is uniform, we can relate $I_{2}$ with $I$ :
$I_{1}-I_{2}=I$
$I_{2}=I_{1}\left(\frac{R_{2}^{2}}{R_{1}^{2}}\right)$
So
$I_{2}\left(\frac{R_{1}^{2}}{R_{2}^{2}}\right)-I_{2}=I, \quad I_{2}=\left(\frac{R_{1}^{2}-R_{2}^{2}}{R_{2}^{2}}\right) I$
$\therefore \vec{B}_{P}=-\frac{\mu_{0} I_{2}}{2 \pi d}=-\frac{\mu_{0} I}{2 \pi d}\left(\frac{R_{1}^{2}-R_{2}^{2}}{R_{2}^{2}}\right)$, rightwards if the current $I$ is out of the page.

## Question 2

Using the method of images,

$V=0, \quad y=0$
$V \rightarrow 0, \quad x^{2}+y^{2} \gg z^{2}$
$V=-\frac{q_{e}}{4 \pi \epsilon_{0}(2 z)}=-\frac{q_{e}}{8 \pi \epsilon_{0} z}$
$\therefore F=-q_{e} \frac{d V}{d z}=-\frac{q_{e}^{2}}{8 \pi \epsilon_{0} z^{2}}, \quad$ the electron moves away from the metallic surface.

## Question 3



The Brewster's angle,
$\tan \theta_{B}=\frac{1.33}{1}, \quad \theta_{B}=53.06^{\circ}$
$\theta_{i}=\theta_{r}=53.06^{\circ}$
$n_{i} \sin \theta_{i}=n_{t} \sin \theta_{t}, \Rightarrow \theta_{t}=36.98^{\circ}$
$\alpha=\frac{\cos \theta_{t}}{\cos \theta_{i}}=\frac{0.80}{0.60}=1.33, \quad \beta=\frac{n_{2}}{n_{1}}=1.33$
Using Fresnel's coefficients,
$r^{\|}=\frac{\alpha-\beta}{\alpha+\beta}=0, \quad r^{\perp}=\frac{1-\alpha \beta}{1+\alpha \beta}=-0.28, \quad t^{\|}=\frac{2}{\alpha+\beta}=0.75, \quad t^{\perp}=\frac{2}{1+\alpha \beta}=0.72$
We assume the randomly polarized light to be tilted at an angle $\phi$ from the vertical axis. So we have the intensities,
$I_{0}=I_{p} \cos \phi \hat{x}+I_{s} \sin \phi \hat{y}$
$I_{t}=\left|t^{\|}\right|^{2} I_{p} \cos \phi \hat{x}+\left|t^{\perp}\right|^{2} I_{s} \sin \phi \hat{y}=0.57 I_{p} \cos \phi \hat{x}+0.52 I_{s} \sin \phi \hat{y}$
$I_{r}=\left|r^{\|}\right|^{2} I_{p} \cos \phi \hat{x}+\left|r^{\perp}\right|^{2} I_{s} \sin \phi \hat{y}=0.08 I_{s} \sin \phi \hat{y}$

## Question 4

* We can consider the model of the Hall Probe. You can look up the following websites for more information:
http://sensors-actuators-info.blogspot.de/2009/08/hall-effect-sensor.html http://www.youtube.com/watch?v=fmZJqhzVXc4

