NATIONAL UNIVERSITY OF SINGAPORE

PC2131, Electricity and Magnetism I

(Semester II: AY 2012-13)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains 4 questions. It comprises 2 printed pages (including this).
- 2. Answer all the questions.
- 3. Use separate pages for separate questions.
- 4. Present your solutions in a clear and comprehensible manner.
- 5. Each question is worth 10 points.
- 6. This is a CLOSED BOOK examination. Students are allowed to bring in an A4-sized (both sides) sheet of notes.
- 7. A non-programmable calculator is allowed.

QUESTIONS:

- 1. Consider a cylinder of length L and radius R carrying a uniform and constant current I.
 - a) Determine the electric and magnetic fields on the surface of the cylinder.
 - b) Show that the integral $\int_A \vec{S} \cdot d\vec{A}$, where \vec{S} is the Poynting vector, is equal to the thermally dissipated power (P=VI) in the wire.
- **2.** Consider a ball with radius R carrying a uniform charge density ρ inside the ball. The ball is made from a material with dielectric constant ϵ_r (i.e. the material is linear $\vec{D} = \epsilon_0 \epsilon_r \vec{E}$).
 - a) Determine the potential difference ΔV between the centre and surface of the sphere.
 - b) Calculate the energy stored in the electric field.
- 3. Consider a long wire with radius R carrying a uniformly distributed current I. The relative permeability of the wire material is μ (i.e. the material is linear $\vec{B} = \mu_0 \mu \vec{H}$).
 - a) Calculate \vec{H} and \vec{B} -fields inside and outside the wire.
 - b) Determine the bound currents inside the wire and at the surface.
 - c) What is the total bound current along the wire?
- **4.** Consider a capacitor made from two circular disks with radius R separated a distance d from each other. The capacitance of this capacitor is $C = \frac{\epsilon_0 \pi R^2}{d}$. The capacitor is charged to a voltage V_0 and connected to a resistor with resistance R and discharged. This gives a time-dependent electric field $\vec{E}(t) = \frac{V_0}{d} e^{-\frac{t}{RC}} \hat{z}$ between the disks.
 - a) Determine the displacement current and the magnetic field $\vec{B}(r)$ between the disks.
 - b) Determine the Poynting vector at the rim (r = R). What does it represent?
 - c) Calculate how much energy is removed from the region between the disks during the discharge?

END OF PAPER

BH