NATIONAL UNIVERSITY OF SINGAPORE

PC2132 - Classical Mechanics

(Semester I: AY2013/14)

Examiner: Prof B.-G. Englert

Exam, 3 December 2013

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Write your matric number on the answer book. **Do not write your name.**
- 2. This examination paper contains **FOUR** questions and comprises **THREE** printed pages.
- 3. Answer **ALL FOUR** questions for a total of 100 marks.
- 4. Show all your work in the answer book.
- 5. For each question, **clearly** indicate what constitutes your final answer.
- 6. The format of this exam is **Closed Book (with authorized materials)** Lecture notes for PC2132 and personal notes directly related to the module may be consulted during the test, **but no other printed or written material**.
- 7. The use of **electronic equipment** of any kind **is not permitted**.

1. One-dimensional motion (25=9+6+10 marks)

A point mass m is moving along the x axis under the influence of the force associated with the potential energy

$$V(x) = E_0 \frac{a^2 x^2}{(x^2 + a^2)^2}$$
 with $E_0 > 0$ and $a > 0$.

- (a) For which energy ranges do you have motion with one, two, or no turning points?
- **(b)** For the oscillatory motion between two turning points, what is the period of small-amplitude oscillations?
- (c) Answer the questions of (a) and (b) for $E_0 < 0$.

2. Sun and planet (30=8+4+10+8 marks)

A planet of mass m moves on a Kepler ellipse with major half-axis a, numerical eccentricity ϵ , angular momentum $|\boldsymbol{l}|=m\kappa>0$, and period $T=\frac{2\pi}{\kappa}a^2\sqrt{1-\epsilon^2}$.

- (a) Express the energy as the sum of the kinetic energy and the potential energy when the planet is in its perihelion.
- **(b)** What does the virial theorem say about the time averages of the kinetic and the potential energy, averaged over one period?
- (c) Find the time average of the potential energy by an explicit integration.
- (d) Derive Kepler's Third Law by combining (a), (b), and (c).

Hint: The integral $\int\limits_0^{2\pi} \frac{\mathrm{d}\alpha}{A+B\cos\alpha} = \frac{2\pi}{\sqrt{A^2-B^2}}$ for A>B>0 could be useful.

3. Relativistic motion (15=5+10 marks)

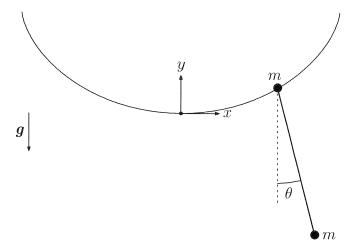
The Lagrange function for a particle of mass m in relativistic motion is

$$L = mc^2 - mc\sqrt{c^2 - \boldsymbol{v}^2} - V(\boldsymbol{r}),$$

where c is the speed of light and V(r) is the potential energy.

- (a) Show that this is the familiar nonrelativistic expression when $|v| \ll c$.
- **(b)** What is the corresponding Hamilton function?

4. Normal modes (30=10+8+12 marks)



Two equal point masses m are moving without friction in the vertical xy plane, with the gravitational acceleration $\mathbf{g} = -g\mathbf{e}_y$. The top mass moves along the cycloid parameterized by $(x,y) = R(\phi + \sin\phi, 1 - \cos\phi)$ with $-\pi < \phi < \pi$ and R>0. The bottom mass is connected to the top mass by a massless string of length 3R; the string is always fully stretched and has angle θ with the vertical direction.

- (a) State the Lagrange function $L(\phi,\dot{\phi},\theta,\dot{\theta}).$
- **(b)** What is the approximate Lagrange function for small-amplitude oscillations around the equilibrium configuration?
- (c) Find the normal modes and describe them.

End of Paper