NATIONAL UNIVERSITY OF SINGAPORE

PC2132: Classical Mechanics

(Semester I: AY 2015/16)

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your student number only on the answer book. Do not write your name.
- 2. This exam paper contains 4 problems and comprises 3 printed pages.
- 3. You have to answer ALL questions.
- 4. Write all answers in the answer book.
- 5. You should begin the answers for each problem on a new page.
- 6. This is a CLOSED BOOK exam.
- 7. One Cheat Sheet (A4 size, both sides) is allowed for this exam.
- 8. An electronic calculator without a network connection is allowed for this exam.

Problem 1: Massive cylinder

Consider a massive cylinder with homogenous density ρ , radius R and height h as shown below:

- (a) Identify three rotation axes for which the inertia tensor \boldsymbol{I} is diagonal. Give a reason for your answer.
- (b) Calculate all non-vanishing entries of inertia tensor I.

Problem 2: Vibration isolation

To protect sensitive experiments from environmental vibrations, a set of tables of masses m_1 and m_2 are stacked on each other:

Both tables are suspended via legs that lead to a behavior of a damped harmonic oscillator, with an oscillation frequency of ω_1 and $\omega_2=1.5\omega_1$, respectively. The oscillation is damped with a quality factor $Q_i=\omega_i/2\beta_i=2$ for both tables.

- (a) Assume the floor vibration is harmonic with a frequency $\omega = 10\omega_1$ and an amplitude of h_0 . Calculate the approximate amplitude h_2 of the vibration of table 2? Make reasonable approximations for your answer.
- (b) Someone drops a sticky screwdriver with mass m_3 on table 1 out of a height h above the table surface (gravitational acceleration is g). What is the resulting change of the table height $h_1(t)$ as a function of time, assuming the table was at rest with $h_1 = 0$ before the impact? Ignore the presence of the second table for this question.

Problem 3: Three coupled pendula

Consider three pendula, each made up by a mass m and suspended from a massless string of length l, with the usual gravitational acceleration \mathbf{g} . The masses are connected with springs that are relaxed in the equilibrium position, and have Hook constant k:

- (a) Identify a convenient set of coordinates to describe the problem, and calculate an approximate Lagrange function for the system that adequately describes small deviations from the equilibrium position.
- (b) Write down the coupled equations of motion in these coordinates.
- (c) Identify two modes of oscillation from the symmetry of the problem, and give the eigenvectors \mathbf{a}_1 , \mathbf{a}_2 that describe the motion of all three masses for the two modes.
- (d) For those two modes, calculate the oscillation (angular) frequencies ω_1 and ω_2 . Give a physical reason for your answer.
- (e) Construct the eigenvector \mathbf{a}_3 for the third mode from the first two.
- (f) Calculate the corresponding angular frequency ω_3 .

Problem 4: New Horizons spacecraft

A spacecraft passed by Pluto (radius $R = 1200 \,\mathrm{km}$) with a minimal distance $d = 12500 \,\mathrm{km}$ above its surface earlier this year.

- (a) The gravitational acceleration on the surface of Pluto is about $g_p = 0.6 \,\mathrm{ms}^{-2}$. Calculate the acceleration on the spacecraft in the pericenter of the trajectory.
- (b) The velocity of the spacecraft (assumed to be measured in the Pluto reference frame) after the flyby is $v = 14.5 \,\mathrm{km}\,\mathrm{s}^{-1}$. What is the deflection angle ϕ of the spacecraft due to the flyby?