Question 1

The curl of \vec{F} is $\vec{\nabla} \times \vec{F}=\vec{\nabla} \times\left(m \omega^{2} \vec{r}-m \vec{\omega} \vec{\omega} \cdot \vec{r}\right)=m \vec{\omega} \times \vec{\omega}=0$, so, yes, \vec{F} is conservative, and since \vec{F} is linear in \vec{r}, the potential energy is
$-\frac{1}{2} \vec{r} \cdot \vec{F}=\frac{m}{2} \vec{r} \cdot[\vec{\omega} \times(\vec{\omega} \times \vec{r})]=-\frac{m}{2}(\vec{\omega} \times \vec{r})^{2}$.

Question 2(a)

The second derivative of the potential energy is
$V^{\prime \prime}(x)=-\frac{d}{d x} F(x)=2 a x$,
so that $V^{\prime \prime}\left(\pm x_{0}\right)= \pm 2 a x_{0}$. It follows that there is a stable equilibrium at $x=x_{0}$ and an unstable equilibrium at $x=-x_{0}$.

Question 2(b)

For $x \approx x_{0}$ we have
$m\left(\frac{d}{d t}\right)^{2}\left(x-x_{0}\right)=F\left[x_{0}+\left(x-x_{0}\right)\right] \approx F^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$
or
$m\left(\frac{d}{d t}\right)^{2}\left(x-x_{0}\right) \approx-2 a x_{0}\left(x-x_{0}\right)=-m \omega^{2}\left(x-x_{0}\right)$
with $\omega=\sqrt{\frac{2 a x_{0}}{m}}$ so that the period is
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{2 a x_{0}}}$.

Question 2(c)

The period will be longer because it is very long when the energy is close to that required to get to the unstable equilibrium point at $x=-x_{0}$.

Question 3(a)

From
$L=\frac{m}{2} \vec{v}^{2}-V(\vec{r})+\vec{v} \cdot \vec{\nabla} u(\vec{r})$
we have
$0=\frac{d}{d t} \frac{\partial L}{\partial \vec{v}}-\frac{\partial L}{\partial \vec{r}}$
$=\frac{d}{d t}[m \vec{v}+\vec{\nabla} u(\vec{r})]-[-\vec{\nabla} V(\vec{r})+\vec{v} \cdot \vec{\nabla} \vec{\nabla} u(\vec{r})]$
$=m \frac{d}{d t} \vec{v}+\vec{v} \cdot \vec{\nabla} \vec{\nabla} u(\vec{r})+\vec{\nabla} V(\vec{r})-\vec{v} \cdot \vec{\nabla} \vec{\nabla} u(\vec{r})$
or
$m \frac{d}{d t} \vec{v}=-\vec{\nabla} V(\vec{r})$
which doesn't contain any trace of $u(\vec{r})$.

Question 3(b)

The Hamilton function is, for $\vec{p}=\frac{\partial L}{\partial \vec{v}}=m \vec{v}+\vec{\nabla} u(\vec{r})$,
$H=\vec{v} \cdot \frac{\partial L}{\partial \vec{v}}-\left.L\right|_{\vec{v}=\frac{\vec{p}-\vec{\nabla} u(\vec{r})}{m}}=\frac{1}{2 m}[\vec{p}-\vec{\nabla} u(\vec{r})]^{2}+V(\vec{r})$.
It depends on the choice of $u(\vec{r})$ because $\vec{\nabla} u$ rules the relation between \vec{p} and \vec{v}.

Question 4(a)

The body is composed of a homogeneous ball of radius R and an ellipsoid with half-axes $2 R, 2 R, R$, both having mass density ρ_{0}. The total mass is, therefore,
$M=\frac{4 \pi}{3} \rho_{0} R^{3}+\frac{4 \pi}{3} \rho_{0} 4 R^{3}=\frac{4 \pi}{3} \rho_{0} 5 R^{3}$
so that
$\rho_{0}=\frac{3}{20 \pi} \frac{M}{R^{3}}$.
$\ln \overleftrightarrow{I}=\int(d \vec{r}) \rho(\vec{r})\left(r^{2} \overleftrightarrow{\mathbb{1}}-\vec{r} \vec{r}\right)$, we have
$\int(d \vec{r}) \rho(\vec{r}) \vec{r} \vec{r}=\underbrace{\rho_{0} \int(d \vec{r}) \vec{r} \vec{r}}_{\text {ball }}+\underbrace{\rho_{0} \int(d \vec{r}) \vec{r} \vec{r}}_{\text {ellipsoid }}=\overleftrightarrow{B}+\overleftrightarrow{E}$
with

$$
\overleftrightarrow{B}=\rho_{0} \int_{r<R}(d \vec{r}) \vec{r} \vec{r}=\rho_{0} \frac{1}{3} \overleftrightarrow{\mathbb{1}} \int_{r<R}(d \vec{r}) r^{2}=\rho_{0} \frac{4 \pi}{3} \frac{R^{5}}{5} \overleftrightarrow{\mathbb{1}}
$$

and

$$
\begin{aligned}
\overleftrightarrow{E} & =\rho_{0} \int(d \vec{r}) \vec{r} \vec{r} \eta\left(1-\frac{x^{2}+y^{2}}{4 R^{2}}-\frac{z^{2}}{R^{2}}\right) \quad\left[x=2 x^{\prime}, y=2 y^{\prime}, z=z^{\prime}\right] \\
& =\rho_{0} 4 \int_{r^{\prime}<R}\left(d \vec{r}^{\prime}\right)\left(4 x^{\prime 2} \vec{e}_{x} \vec{e}_{x}+4 y^{\prime 2} \vec{e}_{y} \vec{e}_{y}+z^{\prime 2} \vec{e}_{z} \vec{e}_{z}\right) \\
& =\rho_{0} \frac{4}{3} \int_{r^{\prime}<R}\left(d \vec{r}^{\prime}\right) r^{\prime 2}\left(4 \vec{e}_{x} \vec{e}_{x}+4 \vec{e}_{y} \vec{e}_{y}+\vec{e}_{z} \vec{e}_{z}\right) \\
& =\rho_{0} \frac{4 \pi}{3} \frac{4 R^{5}}{5}\left(4 \overleftrightarrow{\mathbb{1}}-3 \vec{e}_{z} \vec{e}_{z}\right) \\
{[x} & \left.=2 x^{\prime}, y=2 y^{\prime}, z=z^{\prime} . \text { Terms like } x y \vec{e}_{x} \vec{e}_{y} \text { are odd and do not contribute. }\right]
\end{aligned}
$$

Together,
$\overleftrightarrow{B}+\overleftrightarrow{E}=\rho_{0} \frac{4 \pi}{3} \frac{R^{5}}{5}\left(17 \overleftrightarrow{\mathbb{1}}-12 \vec{e}_{z} \vec{e}_{z}\right)=\frac{M R^{2}}{25}\left(17 \overleftrightarrow{\mathbb{1}}-12 \vec{e}_{z} \vec{e}_{z}\right)$
so that
$\overleftrightarrow{I}=\overleftrightarrow{\mathbb{1}} \operatorname{tr}\{\overleftrightarrow{B}+\overleftrightarrow{E}\}-(\overleftrightarrow{B}+\overleftrightarrow{E})=\frac{M R^{2}}{25}\left[29 \overleftrightarrow{\mathbb{1}}-\left(17 \overleftrightarrow{\mathbb{1}}-12 \vec{e}_{z} \vec{e}_{z}\right)\right]=\frac{M R^{2}}{25}\left(22 \overleftrightarrow{\mathbb{1}}+12 \vec{e}_{z} \vec{e}_{z}\right)$

Question 4(b)

The angular momentum is

$$
\vec{L}=\overleftrightarrow{I} \cdot \vec{\omega}=\frac{M R^{2}}{25}(22 \vec{\omega}+12 \vec{e}_{z} \underbrace{\vec{e}_{z} \cdot \vec{\omega}}_{\omega \cos \theta})=\frac{M R^{2}}{25} \omega\left(22 \vec{e}_{x} \sin \theta+34 \vec{e}_{z} \cos \theta\right)
$$

Question 5(a)

A mass element of the rod at $\left(u x, u y, z(t)+u \sqrt{l^{2}-x^{2}-y^{2}}\right), 0 \leq u \leq 1$, has velocity $\left(u \dot{x}, u \dot{y}, \dot{z}-\frac{u(x \dot{x}+y \dot{y})}{\sqrt{l^{2}-x^{2}-y^{2}}}\right)$, so that the kinetic energy is

$$
\int_{0}^{1} d u \frac{1}{2} M\left[u^{2} \dot{x}^{2}+u^{2} \dot{y}^{2}+\dot{z}^{2}-\frac{2 u \dot{z}(x \dot{x}+y \dot{y})}{\sqrt{l^{2}-x^{2}-y^{2}}}+\frac{u^{2}(x \dot{x}+y \dot{y})^{2}}{l^{2}-x^{2}-y^{2}}\right]
$$

$=\frac{M}{6}\left[\dot{x}^{2}+\dot{y}^{2}+3 \dot{z}^{2}-\frac{3 \dot{z}(x \dot{x}+y \dot{y})}{\sqrt{l^{2}-x^{2}-y^{2}}}+\frac{(x \dot{x}+y \dot{y})^{2}}{l^{2}-x^{2}-y^{2}}\right]$
$=\frac{M}{6}\left[\dot{x}^{2}+\dot{y}^{2}-\frac{3 \dot{z}(x \dot{x}+y \dot{y})}{l}\right]+\cdots$,
where the ellipsis stands for the terms of higher than quadratic order in x, \dot{x}, y, \dot{y} and for the \dot{z}^{2} term which is independent of these coordinates.

We combine this with the potential energy
$M g\left[z(t)+\frac{1}{2} \sqrt{l^{2}-x^{2}-y^{2}}\right]=-\frac{1}{4} M g \frac{x^{2}+y^{2}}{l}+\cdots$
to the Lagrange function for motion restricted to small values of $s=\sqrt{x^{2}+y^{2}}$, that is $s \ll l$,
$L=\frac{M}{6}\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{M}{2 l}(x \dot{x}+y \dot{y})+\frac{M g}{4 l}\left(x^{2}+y^{2}\right)$

The Euler-Lagrange equations are
$\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x}: \frac{d}{d t}\left(\frac{1}{3} M \dot{x}-\frac{M}{2 l} \dot{z} x\right)=-\frac{M}{2 l} \dot{z} \dot{x}+\frac{M g}{2 l} x$
$\frac{d}{d t} \frac{\partial L}{\partial \dot{y}}=\frac{\partial L}{\partial y}: \frac{d}{d t}\left(\frac{1}{3} M \dot{y}-\frac{M}{2 l} \dot{z} y\right)=-\frac{M}{2 l} \dot{z} \dot{y}+\frac{M g}{2 l} y$
which is the same equation twice, so that it is enough to look at the equation for $x(t)$, namely
$\ddot{x}=\frac{3}{2 l}(g+\ddot{z}) x=\frac{3 g}{2 l}(1 \pm \lambda) x$

Question 5(b)

We need a restoring force for one half-period, so that $\lambda>1$ is a first condition. Then $\ddot{x}=\omega^{2}+x$ for half a period, and $\ddot{x}=-\omega^{2}-x$ for the other half period, with $\omega_{ \pm}^{2}=\frac{3 g}{2 l}(\lambda \pm 1)$.

The mappings
$\binom{x(t)}{T \dot{x}(t)} \rightarrow\binom{x\left(t+\frac{1}{2} T\right)}{T \dot{x}\left(t+\frac{1}{2} T\right)} \rightarrow\binom{x(t+T)}{T \dot{x}(t+T)}$
are accomplished by the 2×2 matrices
$M_{+}=\left(\begin{array}{cc}\cosh \left(\omega+\frac{T}{2}\right) & \frac{1}{\omega+T} \sinh \left(\omega+\frac{T}{2}\right) \\ \omega+T \sinh \left(\omega+\frac{T}{2}\right) & \cosh \left(\omega+\frac{T}{2}\right)\end{array}\right)$
and
$M_{-}=\left(\begin{array}{cc}\cos \left(\omega-\frac{T}{2}\right) & \frac{1}{\omega-T} \sin \left(\omega-\frac{T}{2}\right) \\ -\omega-T \sin \left(\omega-\frac{T}{2}\right) & \cos \left(\omega-\frac{T}{2}\right)\end{array}\right)$
The rod stays upright of the eigenvalues of $M_{+} M_{-}$(or $M_{-} M_{+}$) do not have absolute values that exceed unity. Upon denoting these eigenvalues by M_{1} and M_{2} we have
$M_{1} M_{2}=\operatorname{det}\left\{M_{+} M_{-}\right\}=\operatorname{det}\left\{M_{+}\right\} \operatorname{det}\left\{M_{-}\right\}=1$
and
$\mu_{1}+\mu_{2}=\operatorname{tr}\left\{M_{+} M_{-}\right\}=2 \cosh \left(\frac{\omega+T}{2}\right) \cos \left(\frac{\omega-T}{2}\right)$.
So we have 2 real eigenvalues $\mu_{1}= \pm e^{\alpha}, \mu_{2}= \pm e^{-\alpha}$ if $\cosh \alpha=\left|\cosh \left(\frac{\omega+T}{2}\right) \cos \left(\frac{\omega-T}{2}\right)\right|>1$, and one of these values is too big, or we have a pair of complex phase factors, $\mu_{1}=e^{i \alpha}$, $\mu_{2}=e^{-i \alpha}$ if $|\cos \alpha|\left|\cosh \left(\frac{\omega+T}{2}\right) \cos \left(\frac{\omega-T}{2}\right)\right| \leq 1$.

PC2132 Classical Mechanics Solutions

The conditions to be met by λ and T is, therefore $-1 \leq \cosh \left(\frac{\omega+T}{2}\right) \cos \left(\frac{\omega-T}{2}\right) \leq 1$ with $\omega_{ \pm}=\sqrt{\frac{3 g}{2 l}(\lambda \pm 1)}$, in addition to $\lambda>1$.
Solutions provided by
: Prof BG Englert
Solutions typed by
: John Soo

