NATIONAL UNIVERSITY OF SINGAPORE
 PC2134 MATHEMATICAL METHODS IN PHYSICS I

(Semester I: AY 2016-17)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your student number only. Do not write your name.
2. This examination paper contains FOUR (4) questions and comprises THREE (3) printed pages.
3. Students are required to answer ALL questions.
4. Students should write the answers for each question on a new page.
5. This is a CLOSED book examination. You are allowed however to bring in ONE A4-sized (both sides) sheet of notes.
6. Specific permitted devices: non-programmable calculators.

Question 1

(a) Consider a general transformation between two different sets of variables $\left(x_{1}, x_{2}\right) \leftrightarrow\left(y_{1}, y_{2}\right)$:

$$
\left\{\begin{array} { l }
{ x _ { 1 } = x _ { 1 } (y _ { 1 } , y _ { 2 }) } \\
{ x _ { 2 } = x _ { 2 } (y _ { 1 } , y _ { 2 }) }
\end{array} \Leftrightarrow \quad \left\{\begin{array}{l}
y_{1}=y_{1}\left(x_{1}, x_{2}\right) \\
y_{2}=y_{2}\left(x_{1}, x_{2}\right)
\end{array},\right.\right.
$$

where all functions involved are differentiable. Prove the reciprocal rule of the Jacobian:

$$
\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}=\left[\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right]^{-1} .
$$

(b) Evaluate the following integral

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} \frac{x^{2}+y^{2}}{1+\left(x^{2}-y^{2}\right)^{2}} \exp (-2 x y) \mathrm{d} x \mathrm{~d} y
$$

by making a change of variables

$$
u=x^{2}-y^{2}, \quad v=2 x y .
$$

(c) Evaluate the following surface integral

$$
\iint_{\mathcal{S}} \Phi(x, y, z) \mathrm{d} \mathbf{S}, \quad \Phi(x, y, z)=\frac{3}{8} x y z
$$

where \mathcal{S} is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.

Question 2

The general form of the second-order linear ordinary differential equation is given as follows:

$$
\frac{\mathrm{d}^{2} y(x)}{\mathrm{d} x^{2}}+P(x) \frac{\mathrm{d} y(x)}{\mathrm{d} x}+Q(x) y(x)=f(x) .
$$

The general solution is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x),
$$

where $y_{1,2}(x)$ are two linearly independent solutions of the homogeneous equation corresponding to $f(x)=0, y_{p}(x)$ is the solution of the inhomogeneous equations and $c_{1,2}$ are two arbitrary constants.
(a) Given that $y_{1}(x)$ satisfies the homogeneous second-order linear ordinary differential equation, show that

$$
y_{2}(x)=y_{1}(x) \int^{x} \frac{\exp \left[-\int^{u} P(v) \mathrm{d} v\right]}{\left[y_{1}(u)\right]^{2}} \mathrm{~d} u
$$

also satisfies the differential equation.
(b) Consider the following differential equation,

$$
x^{2} \frac{\mathrm{~d}^{2} y(x)}{\mathrm{d} x^{2}}-x \frac{\mathrm{~d} y(x)}{\mathrm{d} x}+y(x)=(\ln x)^{2} .
$$

Given that $y_{1}(x)=x$ is one of the solutions of the homogeneous equation, find the general solution of the inhomogeneous equation.

Question 3

The complex Fourier series of a function $f(x)$ of periodicity $2 L$ is given as follows:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(\mathrm{i} \frac{n \pi x}{L}\right)
$$

where c_{n} is known as the complex Fourier coefficient.
(a) Derive the expression for the complex Fourier coefficient and the Parseval theorem for the complex Fourier series.
(b) Consider a full-wave rectifier that accepts an input signal $\sin x,-\pi \leq x \leq \pi$, and produces as output of the signal: $V(x)=|\sin x|$ for $-\pi \leq x \leq \pi$. Estimate the ratio of the DC output with respect to the incoming total input energy.

Question 4

The Fourier transform pair $f(\mathbf{r})$ and $\tilde{f}(\mathbf{k})$ in three dimensions are defined as follows:

$$
\mathcal{F}\{f(\mathbf{r})\}=\left(\frac{1}{2 \pi}\right)^{3 / 2} \iiint \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{r}} f(\mathbf{r}) \mathrm{d}^{3} \mathbf{r} \quad \Leftrightarrow \quad \mathcal{F}^{-1}\{\tilde{f}(\mathbf{k})\}=\left(\frac{1}{2 \pi}\right)^{3 / 2} \iiint \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{f}} \tilde{f}(\mathbf{k}) \mathrm{d}^{3} \mathbf{k}
$$

where the integrations are over the entire (x, y, z) or $\left(k_{x}, k_{y}, k_{z}\right)$ space.
(a) Given that $\mathbf{A}(\mathbf{r})$ is an arbitrary vector function and $\Phi(\mathbf{r})$ is an arbitrary scalar function, prove that

$$
\boldsymbol{\nabla} \cdot(\Phi \mathbf{A})=\Phi(\boldsymbol{\nabla} \cdot \mathbf{A})+(\boldsymbol{\nabla} \Phi) \cdot \mathbf{A}
$$

(b) Show that the Fourier transform of the Laplacian of an arbitrary scalar function $\Phi(\mathbf{r})$ is given as follow:

$$
\mathcal{F}\left\{\nabla^{2} \Phi(\mathbf{r})\right\}=-k^{2} \tilde{\Phi}(\mathbf{k})
$$

where $k^{2}=k_{x}^{2}+k_{y}^{2}+k_{z}^{2}$ and $\tilde{\Phi}(\mathbf{k})$ is the Fourier transform of $\Phi(\mathbf{r})$. List down any assumption made on the scalar function $\Phi(\mathbf{r})$ in your derivation.
(c) In Newtonian gravity, the Poisson equation relates gravitational potential $\Phi(\mathbf{r})$ to the volume mass density $\rho(\mathbf{r})$ as follows:

$$
\nabla^{2} \Phi(\mathbf{r})=4 \pi G \rho(\mathbf{r})
$$

where G is the gravitational constant. For a given volume mass density $\rho(\mathbf{r})$, use the Fourier transform and the Fourier convolution theorem to show that $\Phi(\mathbf{r})$ can be written in the following form:

$$
\Phi(\mathbf{r})=-G \iiint \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d}^{3} \mathbf{r}^{\prime}
$$

Useful information:

$$
\begin{gathered}
\mathcal{F}\left\{\frac{\mathrm{e}^{-\alpha r}}{r}\right\}=\left(\frac{1}{2 \pi}\right)^{3 / 2} \frac{4 \pi}{k^{2}+\alpha^{2}} \\
f(\mathbf{r}) * g(\mathbf{r})=\iiint f\left(\mathbf{r}^{\prime}\right) g\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \mathrm{d}^{3} \mathbf{r}^{\prime}
\end{gathered}
$$

