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Question 1 [25=15+10]

In classical thermodynamics, the exact differential of internal energy E(S, V ), for a system of gas
with fixed number of particles, satisfies the following fundamental relation:

dE = T dS − P dV ,

where S is the entropy, and P , V and T are the pressure, volume and temperature of the system
respectively.

(a) Construct a function G(T, P ), known as Gibbs energy, via a Legendre transformation such that

S = −
(
∂G

∂T

)
P

, and V =
(
∂G

∂P

)
T

.

Hence, show that (
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

.

Solution:
G(T, P ) ≡ E + PV − TS ⇒ dG = −S dT + V dP �[

∂

∂P

(
∂G

∂T

)
P

]
T

=
[
∂

∂T

(
∂G

∂P

)
T

]
P

⇒
(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

�

(b) A certain gas system is found to have a Gibbs energy given by

G(T, P ) = RT ln
[

aP

(RT )5/2

]

where a and R are constants. Find the specific heat capacity at constant pressure

CP ≡ T

(
∂S

∂T

)
P

,

of this gas system.

Solution:
S(T, P ) = −

(
∂G

∂T

)
P

= 5
2 R−R ln

[
aP

(RT )5/2

]

CP = T

(
∂S

∂T

)
P

= 5
2 R �
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Question 2 [25=10+15]

In non-relativistic quantum mechanics, the position wavefunction ψ(x) of a quantum particle sub-
jected to a time-independent potential energy function V (x) in one-dimensional world is to satisfy
the time-independent Schrödinger equation

− ~2

2m
d2ψ(x)

dx2 + V (x)ψ(x) = E ψ(x) ,

where ~ is the reduced Planck’s constant, ~ ≡ h/2π and E is the energy associated with the position
wavefunction ψ(x).

(a) The momentum wavefunction Φ(p) and position wavefunction ψ(x) are related by Fourier trans-
form below:

Φ(p) = 1√
2π~

ˆ ∞
−∞

exp
(
− ipx

~

)
ψ(x) dx .

Show that the momentum wavefunction satisfies the following equation:

p2

2m Φ(p) +
ˆ ∞
−∞

Ṽ (p− p′)Φ(p′) dp′ = E Φ(p) .

What is the expression for Ṽ (p− p′)?

(b) If V (x) = −α δ(x) where α > 0, show that the momentum wavefunction is given by

Φ(p) = mα

π~
C

p2 + 2m|E| .

Identify the expression for C, in terms of Φ(p), and hence determine the value of E.

Solution:

− ~2

2m
d2ψ(x)

dx2 + V (x)ψ(x) = E ψ(x) ⇒ p2

2m Φ(p) + 1√
2π~

Ṽ (p) ∗ Φ(p) = E Φ(p)

⇒ Ṽ (p− p′) = 1
2π~

ˆ ∞
∞

exp
[
− i (p− p′)x

~

]
V (x) dx �

Ṽ (p− p′) = 1
2π~

ˆ ∞
−∞

exp
[
− i (p− p′)x

~

]
[−α δ(x)] dx = − α

2π~
p2

2m −
α

2π~

ˆ ∞
−∞

Φ(p′) dp′ = E Φ(p) ⇒ C =
ˆ ∞
−∞

Φ(p′) dp′ �

p2

2m −
α

2π~ C = E Φ(p) ⇒ Φ(p) = mα

π~
C

p2 − 2mE �

C = mα

π~

ˆ ∞
−∞

C

p′2 − 2mE dp′ ⇒ mα

π~

ˆ ∞
−∞

1
p′2 +

(√
−2mE

)2 dp′ = 1

⇒ mα

π~
π√
−2mE

= 1 ⇒ E = −mα
2

2~2 �
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Question 3 [25=10+15]

In electromagnetism, magnetostatic vector potential A(r) and volume current density J(r) are related
by

∇× [∇×A(r)] = µ0J(r) ,

where µ0 is the permeability of vacuum. A current distribution produces the following magnetostatic
vector potential

A(r) = µ0

4π
A0 sin θ

r
exp (−λr) êφ ,

where A0 and λ are constants.

(a) Find the volume current density of this distribution.

(b) The magnetic dipole moment m is defined by

m = 1
2

˚
r× J(r) dV ,

where the integration is carried out in the entire region of the current distribution. Find the
magnetic dipole moment associated with this current distribution.

Solution:
∇×A(r) = µ0A0

4π exp (−λr)
(

2 cos θ
r2 êr + λ sin θ

r
êθ
]

J(r) = A0

4π sin θ e−λr
(

2
r3 −

λ2

r

)
êφ �

m = −A0

8π

˚
r exp (−λr)

(
2
r3 −

λ2

r

)
sin θ êθ dV = 0 �
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Question 4 [25=10+15]

The Laplace transform of the function f(t) is defined by

L{f(t)} ≡ f(s) =
ˆ ∞

0
e−st f(t) dt ,

provided that the integral exists.

(a) Prove the Laplace convolution theorem:

L{f(t) ∗ g(t)} ≡
ˆ ∞

0

ˆ t

0
e−st f(u) g(t− u) du dt = f(s) g(s) .

(b) In mechanics, the motion of a driven damped harmonic oscillator may be described by the fol-
lowing second order differential equation:

m
d2x(t)

dt2 + b
dx(t)

dt + kx(t) = F (t) , x(0) = dx(t)
dt

∣∣∣∣∣
t=0

= 0 , t ≥ 0 ,

where m is the mass of the oscillating particle, k is the spring constant, b is the proportional
constant for the damping force and F (t) is the driving force.

(i) Show that the solution can be written in the following form:

x(t) = 1
mω

ˆ t

0
e−α(t−τ) F (τ) sin [ω (t− τ)] dτ .

What are the expressions for α and ω?

(ii) If b = 0 and F (t) = F0 H(t− t0) where H(t− t0) is the Heaviside step function and F0 is
a constant, solve for x(t) using Laplace transform.

Solution:

m
d2x(t)

dt2 + b
dx(t)

dt + kx(t) = F (t) ⇒ x(s) = F (s)
ms2 + bs+ k

≡ F (s)
m
[
(s− α)2 + ω2

]
⇒ α = b

2m , ω2 = k

m
−
(
b

2m

)2

�

x(t) = L−1
{
F (s)G(s)

}
, G(t) ≡ 1

mω
e−αt sin (ωt)

x(t) = F (t) ∗G(t) = 1
mω

ˆ t

0
e−α(t−τ) F (τ) sin [ω (t− τ)] dτ �

x(t) = 1
mω

ˆ t

0
F0 H(τ − t0) sin [ω (t− τ)] dτ = F0

mω

ˆ t

t0

sin [ω (t− τ)] dτ = F0

mω2

{
1− cos [ω (t− t0)]

}
⇒ x(t) = F0

mω2

{
1− cos [ω (t− t0)]

}
H (t− t0) �

KHCM
END OF PAPER
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