NATIONAL UNIVERSITY OF SINGAPORE PC2134 MATHEMATICAL METHODS IN PHYSICS I

(Semester I: AY 2017-18)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your student number only. Do not write your name.
2. This examination paper contains FOUR (4) questions and comprises THREE (3) printed pages.
3. Students are required to answer ALL questions.
4. Students should write the answers for each question on a new page.
5. This is a CLOSED book examination. You are allowed however to bring in ONE A4-sized help sheet.
6. Specific permitted devices: non-programmable calculators.

Question 1

In classical thermodynamics, the exact differential of internal energy $E(S, V)$, for a system of gas with fixed number of particles, satisfies the following fundamental relation:

$$
\mathrm{d} E=T \mathrm{~d} S-P \mathrm{~d} V
$$

where S is the entropy, and P, V and T are the pressure, volume and temperature of the system respectively.
(a) Construct a function $G(T, P)$, known as Gibbs energy, via a Legendre transformation such that

$$
S=-\left(\frac{\partial G}{\partial T}\right)_{P}, \quad \text { and } \quad V=\left(\frac{\partial G}{\partial P}\right)_{T} .
$$

Hence, show that

$$
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Solution:

$$
\begin{gathered}
G(T, P) \equiv E+P V-T S \quad \Rightarrow \quad \mathrm{~d} G=-S \mathrm{~d} T+V \mathrm{~d} P \\
{\left[\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial T}\right)_{P}\right]_{T}=\left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_{T}\right]_{P} \quad \Rightarrow \quad\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}}
\end{gathered}
$$

(b) A certain gas system is found to have a Gibbs energy given by

$$
G(T, P)=R T \ln \left[\frac{a P}{(R T)^{5 / 2}}\right]
$$

where a and R are constants. Find the specific heat capacity at constant pressure

$$
C_{P} \equiv T\left(\frac{\partial S}{\partial T}\right)_{P}
$$

of this gas system.

Solution:

$$
\begin{gathered}
S(T, P)=-\left(\frac{\partial G}{\partial T}\right)_{P}=\frac{5}{2} R-R \ln \left[\frac{a P}{(R T)^{5 / 2}}\right] \\
C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}=\frac{5}{2} R
\end{gathered}
$$

Question 2

In non-relativistic quantum mechanics, the position wavefunction $\psi(x)$ of a quantum particle subjected to a time-independent potential energy function $V(x)$ in one-dimensional world is to satisfy the time-independent Schrödinger equation

$$
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}+V(x) \psi(x)=E \psi(x),
$$

where \hbar is the reduced Planck's constant, $\hbar \equiv h / 2 \pi$ and E is the energy associated with the position wavefunction $\psi(x)$.
(a) The momentum wavefunction $\Phi(p)$ and position wavefunction $\psi(x)$ are related by Fourier transform below:

$$
\Phi(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \exp \left(-\frac{\mathrm{i} p x}{\hbar}\right) \psi(x) \mathrm{d} x
$$

Show that the momentum wavefunction satisfies the following equation:

$$
\frac{p^{2}}{2 m} \Phi(p)+\int_{-\infty}^{\infty} \tilde{V}\left(p-p^{\prime}\right) \Phi\left(p^{\prime}\right) \mathrm{d} p^{\prime}=E \Phi(p) .
$$

What is the expression for $\tilde{V}\left(p-p^{\prime}\right)$?
(b) If $V(x)=-\alpha \delta(x)$ where $\alpha>0$, show that the momentum wavefunction is given by

$$
\Phi(p)=\frac{m \alpha}{\pi \hbar} \frac{C}{p^{2}+2 m|E|} .
$$

Identify the expression for C, in terms of $\Phi(p)$, and hence determine the value of E.

Solution:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(x)}{\mathrm{d} x^{2}}+V(x) \psi(x)=E \psi(x) \quad \Rightarrow \quad \frac{p^{2}}{2 m} \Phi(p)+\frac{1}{\sqrt{2 \pi \hbar}} \tilde{V}(p) * \Phi(p)=E \Phi(p) \\
\Rightarrow \quad \tilde{V}\left(p-p^{\prime}\right)=\frac{1}{2 \pi \hbar} \int_{\infty}^{\infty} \exp \left[-\frac{\mathrm{i}\left(p-p^{\prime}\right) x}{\hbar}\right] V(x) \mathrm{d} x \\
\tilde{V}\left(p-p^{\prime}\right)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} \exp \left[-\frac{\mathrm{i}\left(p-p^{\prime}\right) x}{\hbar}\right][-\alpha \delta(x)] \mathrm{d} x=-\frac{\alpha}{2 \pi \hbar} \\
\frac{p^{2}}{2 m}-\frac{\alpha}{2 \pi \hbar} \int_{-\infty}^{\infty} \Phi\left(p^{\prime}\right) \mathrm{d} p^{\prime}=E \Phi(p) \quad \Rightarrow \quad C=\int_{-\infty}^{\infty} \Phi\left(p^{\prime}\right) \mathrm{d} p^{\prime} \\
\frac{p^{2}}{2 m}-\frac{\alpha}{2 \pi \hbar} C=E \Phi(p) \quad \Rightarrow \quad \Phi(p)=\frac{m \alpha}{\pi \hbar} \frac{C}{p^{2}-2 m E} \\
C=\frac{m \alpha}{\pi \hbar} \int_{-\infty}^{\infty} \frac{C}{p^{\prime 2}-2 m E} \mathrm{~d} p^{\prime} \quad \Rightarrow \quad \frac{m \alpha}{\pi \hbar} \int_{-\infty}^{\infty} \frac{1}{p^{\prime 2}+(\sqrt{-2 m E})^{2}} \mathrm{~d} p^{\prime}=1 \\
\Rightarrow \frac{m \alpha}{\pi \hbar} \frac{\pi}{\sqrt{-2 m E}}=1 \quad \Rightarrow \quad E=-\frac{m \alpha^{2}}{2 \hbar^{2}}
\end{gathered}
$$

Question 3

In electromagnetism, magnetostatic vector potential $\mathbf{A}(\mathbf{r})$ and volume current density $\mathbf{J}(\mathbf{r})$ are related by

$$
\boldsymbol{\nabla} \times[\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r})]=\mu_{0} \mathbf{J}(\mathbf{r}),
$$

where μ_{0} is the permeability of vacuum. A current distribution produces the following magnetostatic vector potential

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{A_{0} \sin \theta}{r} \exp (-\lambda r) \hat{\mathbf{e}}_{\phi}
$$

where A_{0} and λ are constants.
(a) Find the volume current density of this distribution.
(b) The magnetic dipole moment m is defined by

$$
\mathbf{m}=\frac{1}{2} \iiint \mathbf{r} \times \mathbf{J}(\mathbf{r}) \mathrm{d} V
$$

where the integration is carried out in the entire region of the current distribution. Find the magnetic dipole moment associated with this current distribution.

Solution:

$$
\begin{gathered}
\boldsymbol{\nabla} \times \mathbf{A}(\mathbf{r})=\frac{\mu_{0} A_{0}}{4 \pi} \exp (-\lambda r)\left(\frac{2 \cos \theta}{r^{2}} \hat{\mathbf{e}}_{r}+\frac{\lambda \sin \theta}{r} \hat{\mathbf{e}}_{\theta}\right] \\
\mathbf{J}(\mathbf{r})=\frac{A_{0}}{4 \pi} \sin \theta \mathrm{e}^{-\lambda r}\left(\frac{2}{r^{3}}-\frac{\lambda^{2}}{r}\right) \hat{\mathbf{e}}_{\phi} \quad \boldsymbol{\square} \\
\mathbf{m}=-\frac{A_{0}}{8 \pi} \iiint r \exp (-\lambda r)\left(\frac{2}{r^{3}}-\frac{\lambda^{2}}{r}\right) \sin \theta \hat{\mathbf{e}}_{\theta} \mathrm{d} V=\mathbf{0}
\end{gathered}
$$

Question 4

The Laplace transform of the function $f(t)$ is defined by

$$
\mathcal{L}\{f(t)\} \equiv \bar{f}(s)=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t
$$

provided that the integral exists.
(a) Prove the Laplace convolution theorem:

$$
\mathcal{L}\{f(t) * g(t)\} \equiv \int_{0}^{\infty} \int_{0}^{t} \mathrm{e}^{-s t} f(u) g(t-u) \mathrm{d} u \mathrm{~d} t=\bar{f}(s) \bar{g}(s) .
$$

(b) In mechanics, the motion of a driven damped harmonic oscillator may be described by the following second order differential equation:

$$
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}+b \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+k x(t)=F(t), \quad x(0)=\left.\frac{\mathrm{d} x(t)}{\mathrm{d} t}\right|_{t=0}=0, \quad t \geq 0
$$

where m is the mass of the oscillating particle, k is the spring constant, b is the proportional constant for the damping force and $F(t)$ is the driving force.
(i) Show that the solution can be written in the following form:

$$
x(t)=\frac{1}{m \omega} \int_{0}^{t} \mathrm{e}^{-\alpha(t-\tau)} F(\tau) \sin [\omega(t-\tau)] \mathrm{d} \tau .
$$

What are the expressions for α and ω ?
(ii) If $b=0$ and $F(t)=F_{0} H\left(t-t_{0}\right)$ where $H\left(t-t_{0}\right)$ is the Heaviside step function and F_{0} is a constant, solve for $x(t)$ using Laplace transform.

Solution:

$$
\begin{gathered}
m \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}+b \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+k x(t)=F(t) \quad \Rightarrow \quad \bar{x}(s)=\frac{\bar{F}(s)}{m s^{2}+b s+k} \equiv \frac{\bar{F}(s)}{m\left[(s-\alpha)^{2}+\omega^{2}\right]} \\
\Rightarrow \quad \alpha=\frac{b}{2 m}, \quad \omega^{2}=\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2} \\
x(t)=\mathcal{L}^{-1}\{\bar{F}(s) \bar{G}(s)\}, \quad G(t) \equiv \frac{1}{m \omega} \mathrm{e}^{-\alpha t} \sin (\omega t) \\
x(t)=F(t) * G(t)=\frac{1}{m \omega} \int_{0}^{t} \mathrm{e}^{-\alpha(t-\tau)} F(\tau) \sin [\omega(t-\tau)] \mathrm{d} \tau \\
x(t)=\frac{1}{m \omega} \int_{0}^{t} F_{0} H\left(\tau-t_{0}\right) \sin [\omega(t-\tau)] \mathrm{d} \tau=\frac{F_{0}}{m \omega} \int_{t_{0}}^{t} \sin [\omega(t-\tau)] \mathrm{d} \tau=\frac{F_{0}}{m \omega^{2}}\left\{1-\cos \left[\omega\left(t-t_{0}\right)\right]\right\} \\
\Rightarrow \quad x(t)=\frac{F_{0}}{m \omega^{2}}\left\{1-\cos \left[\omega\left(t-t_{0}\right)\right]\right\} H\left(t-t_{0}\right) \quad \text { ■ }
\end{gathered}
$$

