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2. This examination paper contains FIVE (5) questions and comprises FOUR (4) printed pages.
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4. Students should write the answers for each question on a new page.
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help sheet.
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Question 1 [20=10+10]

In Hamiltonian mechanics, the central mathematical entity is the Hamiltonian H(q(t), p(t),t) which
is treated as a function of time ¢ and canonical variables: generalized coordinates g; and generalized
momenta p; fors =1,2, ..., N.

(a) Suppose that the canonical variables ¢; and p; are functions of two variables u and v, the La-
grange bracket {u, v}, ; of v and v with respect to (q(t), p(t)) is defined as

{u,v}g = ; u 0 ou v

Evaluate the Lagrange brackets {g,,, ¢u }; g» {Pm>Pn}1 g a0 {Gm, Pr }1 5

(b) The Poisson bracket [F, G,y of two arbitrary functions F'(q(t), p(¢)) and G(q(t), p(t)) of the
canonical variables ¢; and p; fori = 1,2,--- , N is defined as

N OF 0G OF oG
F =25 90 An Oo ‘

=1

Consider an arbitrary set of 2N independent functions uy(q(t), p(t)) of canonical variables g;
and p; fork =1,2,--- 2N, evaluate

2N

Z {uka u’i}LB [uk’ uj]PB :

k=1

Question 2 [20=8+12]

Consider the following vector function
F(r) = (r2sin29 sin 2¢ + 3) X+ (rsin29 cos® ¢ — 40089) vV —4rsinf sin¢z,
where 7, # and ¢ are spherical coordinates.

(a) Show that F(r) is a conservative field.

(b) Find a scalar potential (r) such that F(r) = —V1/(r). Hence, or otherwise, evaluate the integral

/CF(r)-dr,

where C is the curve from P, = (3,—1,2) to P» = (2,1, —1) expressed in the Cartesian coordi-
nates.
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Question 3 [20=10+10]

Maxwell’s equations take the following form in a homogeneous linear medium:

V. E(r,t) =0, VxE(r,t):—aBg’t),
V -B(r,t) =0, V x B(r,t) = ue 8Eélt‘, t) + poE(r,t),

where €, ;1 and o are permittivity, permeability and conductivity of the medium.

(a) Show that the electric field E(r, t) and magnetic field B(r, t) in the medium satisfy the modified
wave equations below:

2
. 0°E(r, t) - OE(r,t)

9*B(r,t) OB(r,t)
oz M T '

2 —
VZE(r,t) = u 52 + po T

V?B(r,t) = pe

(b) These modified wave equations admit a solution in the form of a plane wave propagating in the z
direction:

E(z,t) = Egexp [i (l;:z — wt)} , B(z,t) = Byexp [i (icz — wt)} ,

where tilded quantities are complex. Here, % is the wave number and w is the angular frequency.
Denoting the wave number as
k= k] + 1](52 y

where k; and k; are real, express k; and ks, in terms of ¢, p, o and w.

Question 4 [20=10+10]

(a) Starting from the linearly independent functions 1,,(s) = s, n = 0,1,..., on the range 0 <
s < 00, construct the first three orthonormal functions qgo(s), q%l (s) and ngﬁg(s), with respect to the
weight function w(s) = e™*. Hence, expand the function f(s) = e* in @y, (s). Keep the first
three terms in the expansion.

(b) Find an eigenfunction expansion for the solution, with boundary conditions y(0) = y(r) = 0, of
the inhomogeneous differential equation

d2, T
P k@) = 1),
where x is the constant and
x, 0<zx<m/2,
flz) =
T—x, m/2<z<m
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Question 5 [20=8+12]

The Laplace transform of the function f(t) is defined by

LUMY=T6) - [ e rwa,
0
provided that the integral exists.

(a) Given that H(t — a) is the Heaviside step function where a > 0, show that

L{H(t — a) f(t - a)} = exp (—sa) F(s).

(b) Consider a resistance 12 and an inductance L connected in series with a voltage V' (t). The equa-
tion governs the current I(t) in the circuit is

dI(t)

L
dit

+IR=V(t).

Suppose I(0) = 0 and V (t) is a voltage impulse at t = ¢, > 0 given by V' (¢) = V; §(¢ —t,). Find
the current /(¢) by the Laplace transform method.
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END OF PAPER
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