Solutions to PC2230 AY0607 Paper

Part I

1(i) $\frac{1}{T_{i}}=\left(\frac{\partial S_{i}}{\partial E_{1}}\right)_{V_{i} N_{i}}$

1(ii) $\frac{P_{i}}{T_{i}}=\left(\frac{\partial S_{i}}{\partial V_{i}}\right)_{E_{i} N}$
2(a) Clausius statement of the $2^{\text {nd }}$ law of thermodynamics is "Heat, by itself, cannot pass from a colder to a hotter body".

2(b) $\quad d E=T d S-P d V$
$d F=-P d V-S d T$
$d G=V d P-S d T$
$d H=T d S+V d P$
(i) At constant E and V, entropy is maximum at equilibrium.
(ii) At constant T and V, Helmholtz free energy is minimum at equilibrium
(iii) At constant T and P, Gibbs free energy is minimum at equilibrium
(iv) At constant H and P, entropy is maximum at equilibrium
$3 \quad 3$ possible situations: spin parallel to B, spin anti-parallel to B, spin perpendicular to B 3 possible energies of dipole: $\mu B,-\mu B, 0$

Partition function of 1 atom,
$Z_{1}=\sum_{r} e^{-E_{r} \beta}=e^{-\mu B / k T}+e^{\mu B / k T}+e^{0}=2 \cosh \frac{\mu B}{k T}+1=2 \cosh x+1$
Mean magnetic moment of 1 atom,
$\bar{\mu}=\frac{1}{\beta}\left(\frac{\partial \ln Z_{1}}{\partial B}\right)_{\beta}=\frac{1}{\beta} \frac{1}{Z_{1}} \frac{\partial Z_{1}}{\partial x} \frac{\partial x}{\partial B}=\frac{1}{\beta} \frac{1}{Z_{1}}(2 \sinh x) \frac{\mu}{k T}=\mu \frac{2 \sinh x}{1+2 \cosh x}$

Mean magnetic moment of N atoms $=N \bar{\mu}=N \mu \frac{2 \sinh x}{1+2 \cosh x}$ (shown)

4 Energy of harmonic oscillator $=\hbar \omega\left(n+\frac{1}{2}\right)$
Partition function, $Z=\sum_{n} \exp (-\beta \varepsilon)=\sum_{n} \exp \left(-\beta \hbar \omega\left(n+\frac{1}{2}\right)\right)$
$=\exp \left(-\frac{1}{2} \beta \hbar \omega\right)\left(\sum_{n} \exp (-n \beta \hbar \omega)\right)$
$=\exp \left(-\frac{1}{2} \beta \hbar \omega\right) \frac{1}{1-\exp (-\beta \hbar \omega)}$

Let $x=\beta \hbar \omega, Z=\frac{e^{-x / 2}}{1-e^{-x}}, \ln Z=-\frac{1}{2} x-\ln \left(1-e^{-x}\right)$
$\bar{\varepsilon}=-\frac{\partial \ln Z}{\partial \beta}=-\frac{\partial \ln Z}{\partial x} \frac{\partial x}{\partial \beta}=-\left(-\frac{1}{2}-\frac{e^{-x}}{1-e^{-x}}\right) \hbar \omega=\left(\frac{1}{2}+\frac{e^{-x}}{1-e^{-x}}\right) \hbar \omega$
For N molecules, mean energy $=3 N \bar{\varepsilon}=3 N \hbar \omega\left(\frac{1}{2}+\frac{e^{-x}}{1-e^{-x}}\right)$
$C_{V}=\frac{\partial \bar{\varepsilon}}{\partial T}=\frac{\partial \bar{\varepsilon}}{\partial x} \frac{\partial x}{\partial T}=3 N \hbar \omega\left(\frac{\hbar \omega}{k T^{2}}\right)\left(\frac{e^{-x}}{\left(1-e^{-x}\right)^{2}}\right)=3 N k\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{x}}{\left(e^{x}-1\right)^{2}}$
$\therefore C_{V}=3 N k\left(\frac{\Theta_{E}}{T}\right)^{2} \frac{\exp \left(\frac{\Theta_{E}}{T}\right)}{\left[\exp \left(\frac{\Theta_{E}}{T}\right)-1\right]^{2}}$ (shown)

$$
\begin{aligned}
& S=S(T, V) \\
& d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V \\
& d S=\left(\frac{\partial S}{\partial E}\right)_{V}\left(\frac{\partial E}{\partial T}\right)_{V} d T+\left(\frac{\partial P}{\partial T}\right)_{V} d V \\
& d S=\frac{1}{T} C_{V} d T+\left(\frac{\partial P}{\partial T}\right)_{V} d V \\
& T d S=C_{V} d T+\left(\frac{\partial P}{\partial T}\right)_{V} d V \quad \text { (shown) }
\end{aligned}
$$

6 Sum of chemical potentials of LHS $=3(-0.4)+2(-0.3)+4(0.2)=-1.0$
Sum of chemical potentials of RHS $=2(0.1)+3(-0.2)=-0.4$
At equilibrium, the chemical potentials of both sides must be equal, which will be -0.7.

Hence, the reaction will proceed from right to left spontaneously, so that the chemical potential of LHS will increase to -0.7 , while the RHS can decrease to -0.7 .

Part II

1(a) $\quad F=-k T \ln Z$

$$
\begin{aligned}
& \left(\frac{\partial F}{\partial V}\right)_{T}=-k T\left(\frac{\partial \ln Z}{\partial V}\right)_{\beta}=-k T \beta P \\
& P=-\left(\frac{\partial F}{\partial V}\right)_{T} \text { (shown) }
\end{aligned}
$$

1(b)(i) For ideal gas, the potential energy of interaction between the molecules is negligible compared to their kinetic energy of motion.

For classical gas, the potential energy of interaction between the molecules is not negligible.

1(b)(ii) $Z(T, V, N)=\frac{1}{N!}\left[Z_{1}(T, V)\right]^{N}=\frac{1}{N!}\left[Z_{1}^{t r} Z_{\text {int }}\right]^{N}=\frac{1}{N!} V^{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 N / 2} Z_{\text {int }}^{N}$

$$
Z_{\mathrm{int}}=\left[\frac{Z(T, V, N) N!}{V^{N}}\left(\frac{h^{2}}{2 \pi m k T}\right)^{3 N / 2}\right]^{\frac{1}{N}}=\frac{1}{V}\left(\frac{h^{2}}{2 \pi m k T}\right)^{\frac{3}{2}}[Z(T, V, N) N!]^{\frac{1}{N}}
$$

1(b)(iii) $Z=\frac{1}{N!} V^{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 N / 2}\left[Z_{\text {int }}\right]^{N}$
For $N \gg 1$, using Stirling's formula, $N!=\left(\frac{N}{e}\right)^{N}$
$Z=\left(\frac{e}{N}\right)^{N} V^{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 N / 2}\left[Z_{\text {int }}\right]^{N}$
$F=-k T \ln Z=-N k T \ln \left[\left(\frac{e V}{N}\right)\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} Z_{\mathrm{int}}\right]$
1(b)(iv)For ideal classical gas, the internal partition function can be ignored as the potential energy of the gas molecules is negligible.

Considering $F_{t r}$ only,
$F_{t r}=-N k T \ln \left[\frac{e V}{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\right]$
Using $P=-\left(\frac{\partial F}{\partial V}\right)_{T}$,
$P=-\left(\frac{\partial F}{\partial V}\right)_{T}=\operatorname{NkT}\left(\frac{1}{V}\right)$
$\Rightarrow P V=N k T$
2(a)(i) $u(T)=\int_{o}^{\infty} u(\omega, T) d \omega=\int_{0}^{\infty} \frac{\hbar \omega^{3}}{\pi^{2} c^{3}[\exp (\hbar \omega / k T)-1]} d \omega$
Let $x=\frac{\hbar \omega}{k T}, d x=\frac{\hbar}{k T} d \omega, \omega=\frac{k T}{\hbar} x$
$u(T)=\int_{0}^{\infty} \frac{\hbar \omega^{3}}{\pi^{2} c^{3}[\exp (\hbar \omega / k T)-1]} d \omega=\frac{\hbar}{\pi^{2} c^{3}}\left(\frac{k T}{\hbar}\right)^{3} \frac{k T}{\hbar} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x$
$u(T)=\frac{\hbar}{\pi^{2} c^{3}}\left(\frac{k T}{\hbar}\right)^{3} \frac{k T}{\hbar} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x=\frac{\hbar}{\pi^{2} c^{3}}\left(\frac{k T}{\hbar}\right)^{4} \frac{\pi^{4}}{15}=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}} T^{4}$
$u(T)=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}} T^{4}=a T^{4} \quad$ (Stefan-Boltzmann law)

2(a)(ii) $f=\frac{c}{\lambda}=\frac{3.0 \times 10^{8}}{3.0 \times 10^{-2}}=1.0 \times 10^{10} \mathrm{~Hz}$
$P=\sigma e A T^{4}=5.67 \times 10^{-8}(4 \pi)\left(7 \times 10^{8}\right)^{2}(6000)^{4}=4.52 \times 10^{26} \mathrm{~W}$
Power radiated per megacycle bandwidth $=\frac{4.52 \times 10^{26}}{1.0 \times 10^{4} \mathrm{MHz}}=4.52 \times 10^{22} \mathrm{~W}(\mathrm{MHz})^{-1}$
2(b)(i) $V=V(T, P)$
$d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P=\beta V d T-\kappa V d P$
$C_{V}=\left(\frac{\partial E}{\partial T}\right)_{V} \quad C_{P}=\left(\frac{\partial E}{\partial T}\right)_{P}$
$S=S(T, P)$
$d S=\left(\frac{\partial S}{\partial T}\right)_{P} d T+\left(\frac{\partial S}{\partial P}\right)_{T} d P=\left(\frac{\partial S}{\partial E}\right)_{P}\left(\frac{\partial E}{\partial T}\right)_{P}-\left(\frac{\partial V}{\partial T}\right)_{P} d P$
$d S=\frac{1}{T} C_{P}-V \beta d P$
$T d S=C_{P}-V \beta T d P$
$S=S(T, V)$
$d S=\left(\frac{\partial S}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial V}\right)_{T} d V=\left(\frac{\partial S}{\partial E}\right)_{V}\left(\frac{\partial E}{\partial T}\right)_{V} d T+\left(\frac{\partial S}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial V}\right)_{T} d V$
$d S=\frac{1}{T} C_{V} d T-\left(\frac{\partial V}{\partial T}\right)_{P} \frac{1}{-\kappa V}(\beta V d T-\kappa V d P)=\frac{C_{V}}{T} d T+\frac{\beta^{2} V}{\kappa} d T-V \beta d P$
$T d S=\left(C_{V}+\frac{T \beta^{2} V}{\kappa}\right) d T-T V \beta d P$
Comparing (1) and (2),
$C_{P}=C_{V}+\frac{T \beta^{2} V}{\kappa} \Rightarrow C_{P}-C_{V}=\frac{T \beta^{2} V}{\kappa}$
2(b)(ii) Since β and κ is always positive, $\frac{T \beta^{2} V}{\kappa}$ is always positive, $C_{P}-C_{V}$ is always positive, hence $C_{P}>C_{V}$

3(a)(i) At equilibrium, the Gibbs free energy per molecule is the same.

$$
g_{1}(T, P)=g_{2}(T, P)
$$

3(a)(ii) $g_{1}(T, P)=g_{2}(T, P)$

$$
g_{1}(T+d T, P+d P)=g_{2}(T+d T, P+d P)
$$

By Taylor's series expansion,
$g_{1}+\left(\frac{\partial g_{1}}{\partial P}\right)_{T} d P+\left(\frac{\partial g_{1}}{\partial T}\right)_{P} d T=g_{2}+\left(\frac{\partial g_{2}}{\partial P}\right)_{T} d P+\left(\frac{\partial g_{2}}{\partial T}\right)_{P} d T$
Since $g_{1}=g_{2},\left(\frac{\partial g_{1}}{\partial P}\right)_{T} d P+\left(\frac{\partial g_{1}}{\partial T}\right)_{P} d T=\left(\frac{\partial g_{2}}{\partial P}\right)_{T} d P+\left(\frac{\partial g_{2}}{\partial T}\right)_{P} d T$
$\left(\frac{\partial g_{1}}{\partial P}\right)_{T} d P-\left(\frac{\partial g_{2}}{\partial P}\right)_{T} d P=\left(\frac{\partial g_{2}}{\partial T}\right)_{P} d T-\left(\frac{\partial g_{1}}{\partial T}\right)_{P} d T$
$-\Delta\left(\frac{\partial g}{\partial P}\right)_{T} d P=\Delta\left(\frac{\partial g}{\partial T}\right)_{P} d T$
$\frac{d P}{d T}=-\frac{\Delta\left(\frac{\partial g}{\partial T}\right)_{P}}{\Delta\left(\frac{\partial g}{\partial P}\right)_{T}}$
For each phase, $d G_{i}=-S_{i} d T+V_{i} d P+\mu_{i} d N_{i}$
For 1-component phase, $\mu_{i}=g_{i}, G_{i}=g_{i} N_{i}$
$d G_{i}=g_{i} d N_{i}+N_{i} d g_{i}$
$g_{i} d N_{i}+N_{i} d g_{i}=-S_{i} d T+V_{i} d P+\mu_{i} d N_{i}$
$N_{i} d g_{i}=-S_{i} d T+V_{i} d P$
$\left(\frac{\partial g_{i}}{\partial T}\right)_{P}=-\frac{S_{i}}{N_{i}} \quad\left(\frac{\partial g_{i}}{\partial P}\right)_{T}=\frac{V_{i}}{N_{i}}$
$\frac{d P}{d T}=-\frac{\Delta\left(\frac{\partial g}{\partial T}\right)_{P}}{\Delta\left(\frac{\partial g}{\partial P}\right)_{T}}=\frac{\Delta\left(\frac{S}{N}\right)}{\Delta\left(\frac{V}{N}\right)}=\frac{\Delta S}{\Delta V}$
3(a)(iii) At phase transformation from phase 1 to phase 2, $\Delta S=\frac{L_{12}}{T}$

$$
\frac{d P}{d T}=\frac{\Delta S}{\Delta V}=\frac{L_{12}}{T \Delta V}
$$

3(b) One of the reasons is that because the volume of water contracts when it melts. This is shown in the values given, the specific volume of ice is bigger than that of water at $0^{\circ} \mathrm{C}$.
$\Delta V=V_{\text {water }}-V_{\text {ice }}=(1.00013-1.09070) \times 10^{-3}=-0.09057 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{kg}$
$\frac{d P}{d T}=-\frac{3.35 \times 10^{5}}{\left(0.09057 \times 10^{-3}\right) T}=-\frac{3.70 \times 10^{9}}{T} \mathrm{~Pa} / \mathrm{K}$

Since T is always positive, the gradient of the solid-liquid phase transition curve is always negative for water. As a result, the triple point temperature is higher than the ice point temperature at any pressure.

