Suggested Solution for Statistical Physics and Thermodynamics AY2007-08 Semester 2

NUS Physics Society

1. (a) (Note that the subscript 1, 2 indicating the subsystem 1 and subsystem 2 respectively. Whereas the variables without subscript refer to variables of whole system)

$$
\begin{align*}
S_{1}+S_{2}=S & V_{1}+V_{2}=V \\
E_{1}+E_{2}=E & N_{1}+N_{2}=N \tag{1}\\
\text { Hence, } \quad \frac{\partial \mathrm{V}_{2}}{\partial \mathrm{~V}_{1}}=-1 & \text { as } \frac{\partial \mathrm{V}}{\partial \mathrm{~V}_{1}}=0 \\
\left(\frac{\partial S_{1}}{\partial V_{1}}\right)_{E_{1} N_{1}}= & \left(\frac{\partial S_{2}}{\partial V_{2}}\right)_{E_{2} N_{2}} \tag{2}
\end{align*}
$$

The pressure of each subsystem is defined as $P_{i}=T_{i} \frac{\partial S_{i}}{\partial V_{i}}$ where $i=1$ or 2 .
Hence the equilibrium condition is achieved when $T_{1}=T_{2}$ and $P_{1}=P_{2}$ from equation ??.
(b)
$\frac{d S}{d t}=\frac{\partial S_{1}}{\partial V_{1}} \frac{d V_{1}}{d t}+\frac{\partial S_{2}}{\partial V_{2}} \frac{d V_{2}}{d t}=\left(\frac{P_{1}}{T_{1}}-\frac{P_{2}}{T_{2}}\right) \frac{d V_{1}}{d t}>0 \quad$ from the second law of thermodynamics.
Hence, if $P_{1}>P_{2}, \frac{d V_{1}}{d t}>0$ according to the second law.
2. (a)

$$
\begin{gathered}
d S=\frac{d Q}{T} \quad d Q=C \cdot d T \\
\Delta S=C \int_{T_{1}}^{T_{0}} \frac{1}{T} d T=C \ln \left(\frac{T_{0}}{T_{1}}\right)
\end{gathered}
$$

(b) Change in entropy of water $=m C \cdot \ln \left(\frac{T_{0}}{T_{1}}\right)=1000 \times 4.2 \times \ln (373 / 273)=1311 \mathrm{JK}^{-1}$

Change in entropy of heat reservoir $=-1311 J K^{-1}$
while change in entropy of the entire system $=0$
3. (a)

$$
\begin{aligned}
S & =-\left(\frac{\partial F}{\partial T}\right)_{V} \\
& =N K \ln \left[\frac{e V}{N}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\right]+\frac{3 N K T^{3 / 2}}{2}
\end{aligned}
$$

(b)
4. (a) Vapour is much less dense than water, $\Delta V=V_{\text {vapour }}-V_{\text {liquid }} \approx V_{\text {vapour }}$

$$
\begin{aligned}
P V & =R T \text { per one mole } \\
\text { Hence, } \mathrm{L} & =T \Delta V \frac{d P}{d T} \\
& =\frac{R T^{2}}{P} \frac{d P}{d T}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d P}{d T} & =\frac{(788-733.7) \mathrm{mmHg}}{(373-272) \mathrm{K}} \\
& =\frac{54.3 \mathrm{mmHg}}{2 \mathrm{~K}}=7239 \mathrm{PaK}^{-1} \\
L & =\frac{R T^{2}}{P} \frac{d P}{d T} \\
& =\frac{8.31 \times 373^{2}}{760 \times 133.3} \times 7239=82614 \mathrm{~J} / \mathrm{mole}
\end{aligned}
$$

5. (a) Fermi energy, ϵ_{F} achived at the condition $T=0 K$. The step function of the equation is ignored. Thus,

$$
\begin{aligned}
N\left(\epsilon_{F}\right) & =\frac{4 \pi V}{h^{3}}(2 m)^{3 / 2} \int_{0}^{\epsilon_{F}} \epsilon^{1 / 2} d \epsilon \\
& =\frac{4 \pi V}{h^{3}} \frac{2}{3} \epsilon_{F}^{3 / 2} \\
\text { Hence, after rearranging, } \epsilon_{F} & =\frac{h^{2}}{2 m}\left(\frac{3 N}{8 \pi V}\right)^{2 / 3}
\end{aligned}
$$

(b) $\epsilon_{F}=k \cdot T_{F} \quad \epsilon_{F}=\frac{1}{2} m V_{F}^{2}$ where k is Botlzmann constant.
(c) Given $\frac{N}{V}=4.7 \times 10^{22} \mathrm{~cm}^{-3}=4.7 \times 10^{28} \mathrm{~m}^{-3}$.

$$
\begin{aligned}
\epsilon_{F} & =\frac{h^{2}}{2 m}\left(\frac{3}{8 \pi} \frac{N}{V}\right)^{2 / 3} \\
& =\frac{\left(6.626 \times 10^{-34}\right)^{2}}{2 \times 9.11 \times 10^{-31}}\left(\frac{3}{8 \pi} \times 4.7 \times 10^{28}\right)^{2 / 3}=7.608 \times 10^{-19} \mathrm{~J} \\
T_{F} & =\frac{7.608 \times 10^{-19}}{1.381 \times 10^{-23}}=5.509 \times 10^{4} \mathrm{~K} \\
V_{F} & =\sqrt{\frac{2 \epsilon_{F}}{m}}=\sqrt{\frac{2 \times 7.608 \times 10^{-19}}{9.11 \times 10^{-31}}}=1.292 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. Given, $Q_{P}=k T^{2} \frac{d}{d T} \ln K_{p}(T)$

$$
\begin{aligned}
Q_{V} & =Q_{P}-k T \sum_{i} v_{i}=k T^{2} \frac{d}{d T} \ln K_{p}(T)-k T \sum_{i} v_{i} \\
& =k T^{2} \frac{d}{d T} \sum_{i} v_{i} \ln \left[k T f_{i}(T)\right]-k T \sum_{i} v_{i} \\
& =k T^{2} \frac{d}{d T} \sum_{i} v_{i} \ln \left[f_{i}(T)\right]+k T^{2} \frac{d}{d T} \sum_{i} v_{i} \ln [k T]-k T \sum_{i} v_{i} \\
& =k T^{2} \frac{d}{d T} \sum_{i} v_{i} \ln \left[f_{i}(T)\right]=k T^{2} \frac{d}{d T} \ln \left[\prod\left(f_{i}(T)\right)^{v_{i}}\right] \\
& =k T^{2} \frac{d}{d T} \ln K_{c}(T)
\end{aligned}
$$

Long Questions

1. (a) The energy of the dipole with magnetic moment parallel to magnetic field, $=-B \cdot \mu$. The energy of the dipole with magnetic moment anti-parallel to magnetic field, $=B \cdot \mu$.

$$
\begin{aligned}
\ln Z & =\sum_{i} \exp \left(-\beta \epsilon_{i}\right)=\exp (\beta B \mu)+\exp (-\beta B \mu) \\
\frac{\partial \ln Z}{\partial B} & =\beta \mu\left(\frac{1}{Z}\right) \exp (\beta B \mu)+(-\beta \mu)\left(\frac{1}{Z}\right) \exp (-\beta B \mu) \\
\frac{1}{\beta}\left(\frac{\partial \ln Z}{\partial B}\right)_{\beta} & =\mu\left(\frac{1}{Z}\right) \exp (\beta B \mu)+(-\mu)\left(\frac{1}{Z}\right) \exp (-\beta B \mu)
\end{aligned}
$$

We know that population of dipole with magnetic moment parallel (anti-parallel) to magnetic field $=\frac{1}{Z} \exp (\beta B \mu) \quad\left(\frac{1}{Z} \exp (-\beta B \mu)\right)$. Hence,

$$
\begin{aligned}
\bar{\mu} & =P_{(+)} \mu+P_{(-)}(-\mu)=\frac{1}{\beta}\left(\frac{\partial \ln Z}{\partial B}\right)_{\beta} \\
-\left(\frac{\partial \ln Z}{\partial \beta}\right)_{B} & =(-B \mu)\left(\frac{1}{Z}\right) \exp (\beta B \mu)+(B \mu)\left(\frac{1}{Z}\right) \exp (-\beta B \mu) \\
& =P_{(+)} \epsilon_{+}+P_{(-)} \epsilon_{-}=\bar{E} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
I & =\frac{N \cdot \bar{\mu}}{V}=\frac{N}{V} \times\left[\mu\left(\frac{1}{Z}\right) \exp (\beta B \mu)+(-\mu)\left(\frac{1}{Z}\right) \exp (-\beta B \mu)\right] \\
& =\frac{N}{V} \mu \times \frac{[\exp (x)-\exp (-x)]}{\exp (x)+\exp (-x)} \text { where } \mathrm{x}=\beta \mathrm{B} \mu \\
& =\frac{N}{V} \mu \tanh x
\end{aligned}
$$

In the limit of low magnetic field and high temperature, $x \ll 1$ and thus $\tanh x \approx x$. Thus, $I=\frac{N}{V} \mu x=\frac{N \mu^{2} B}{V k T}$

Magnetic susceptibility $X=\frac{I}{H}=\frac{N \mu^{2} \mu_{o}}{V k T}$ where $H=\frac{B}{\mu_{o}}$
$X \propto \frac{1}{T}$ Curie's law is verified.
(c) $\Omega(n)=\frac{N!}{n!(N-n)!}$ statistical weight of n dipoles parallel to magnetic field from total N dipoles.
$S(n)=k \ln [\Omega(n)]=k[N \ln (N)-n \ln (n)-(N-n) \ln (N-n)]$
Striling approximation $\ln (n!) \approx n \ln (n)-n$

$$
\begin{aligned}
\frac{1}{T} & =\left(\frac{\partial S}{\partial E}\right)=\frac{\partial S(n)}{\partial n} \cdot \frac{\partial n}{\partial E} \\
& =\left[k \ln \left(\frac{N-n}{n}\right)\right]\left[-\frac{1}{2 \mu B}\right] \text { as } E=(N-2 n) \mu B \\
& =\frac{k}{2 \mu B} \ln \left(\frac{n}{N-n}\right)
\end{aligned}
$$

Hence, $\beta=\frac{1}{2 \mu B} \ln \left(\frac{n}{N-n}\right)$ and If $n<\frac{1}{2} N, T<0$ (negative temperature)
2. (a) Given $P(v) d v=\frac{4}{\sqrt{\pi}} u^{2} \exp \left(-u^{2}\right) d u=P(u) d u$

$$
\begin{aligned}
\frac{d P(u)}{d u} & =\frac{d}{d u}\left(\frac{4}{\sqrt{\pi}} u^{2} \exp \left(-u^{2}\right)\right) \\
& =\frac{-8}{\sqrt{\pi}} u^{3} \exp \left(-u^{2}\right)+\frac{8}{\sqrt{\pi}} u \cdot \exp \left(-u^{2}\right) \\
& =u \cdot \exp \left(-u^{2}\right) \frac{8}{\sqrt{\pi}}\left(1-u^{2}\right)
\end{aligned}
$$

Hence, when $u=1$, most probable speed achieved. Which imply that $V_{\max }=\left(\frac{2 k T}{m}\right)^{1 / 2}$.
(b)

$$
\begin{aligned}
\bar{v} & =\int_{0}^{\infty} v P(v) d v=\int_{0}^{\infty} u \cdot\left(\frac{2 k T}{m}\right)^{1 / 2} \frac{4}{\sqrt{\pi}} u^{2} \exp \left(-u^{2}\right) d u \\
& =\left(\frac{2 k T}{m}\right)^{1 / 2} \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} u^{3} \exp \left(-u^{2}\right) d u \\
& =\left(\frac{2 k T}{m}\right)^{1 / 2} \frac{4}{\sqrt{\pi}}\left(\frac{1}{2}\right) \quad \text { from identity } \\
& =2\left(\frac{2 k T}{\pi m}\right)^{1 / 2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
V_{r m s}^{2} & =\int_{0}^{\infty} v^{2} P(v) d v=\int_{0}^{\infty} u^{2} \cdot\left(\frac{2 k T}{m}\right) \frac{4}{\sqrt{\pi}} u^{2} \exp \left(-u^{2}\right) d u \\
& =\left(\frac{2 k T}{m}\right) \frac{4}{\sqrt{\pi}} \int_{0}^{\infty} u^{4} \exp \left(-u^{2}\right) d u \\
& =\left(\frac{2 k T}{m}\right) \frac{4}{\sqrt{\pi}}\left(\frac{3}{8} \sqrt{\pi}\right) \quad \text { from identity } \\
& =\frac{3 k T}{m}
\end{aligned}
$$

Hence, $V_{r m s}=\left(\frac{3 k T}{m}\right)^{1 / 2}$
(d)

$$
\bar{E}=\frac{1}{2} m \cdot V_{r m s}^{2}=\frac{3}{2} k T
$$

3. (a) Ordinary, the number of particles of BE gas, N is given as

$$
V \frac{2 \pi(2 m)^{3 / 2}}{h^{3}} \int_{0}^{\infty} \frac{\epsilon^{1 / 2} d \epsilon}{e^{\beta(\epsilon-\mu)}-1}
$$

When, $T \downarrow, \mu$ must \uparrow for N / V to be kept constant. Meahwhile, $T=T_{c}$ imply $\mu=0$. Hence,

$$
\frac{N}{V}=\left(\frac{2 \pi m k T_{c}}{h^{2}}\right)^{3 / 2}\left(\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{z^{1 / 2} d z}{e^{z}-1}\right) \quad \text { with } \quad z=\frac{\epsilon}{k T_{c}}
$$

Thus, $T_{c}=\frac{1}{k}\left(\frac{N}{V}\right)^{2 / 3} \frac{h^{2}}{2 \pi m}\left(\frac{1}{2.612}\right)^{2 / 3}$
(b) Below T_{c}, the chemical potential is extremely closed to zero. The number of particles with non-zero energy can be computed as

$$
N_{\epsilon>0}=V \frac{2 \pi(2 m)^{3 / 2}}{h^{3}} \int_{0}^{\infty} \frac{\epsilon^{1 / 2} d \epsilon}{e^{\beta \epsilon}-1}
$$

Introduce $z=\beta \epsilon, N_{\epsilon>0}=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\left(\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{z^{1 / 2} d z}{e z-1}\right)=N\left(\frac{T}{T_{c}}\right)^{3 / 2}$
Meanwhile, for number of particles with zero-energy ground state is $N\left(1-\left(\frac{T}{T_{c}}\right)^{3 / 2}\right)$.
(c) Energy of BE gas at $T<T_{c}$, and introduce $z=\beta \epsilon$

$$
\begin{aligned}
& E=V\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2}\left(\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{z^{3 / 2} d z}{e^{z}-1}\right) \\
& N=V\left(\frac{2 \pi m k T_{c}}{h^{2}}\right)^{3 / 2}\left(\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \frac{z^{1 / 2} d z}{e^{z}-1}\right)
\end{aligned}
$$

Hence, $E=0.77 N k \frac{T^{5 / 2}}{T_{c}^{3 / 2}}$ computed with the identity given by question. Heat capacity, $C_{v}=$ $\frac{d E}{d T}=\frac{5}{2} \times 0.77 N R\left(\frac{T}{T_{c}}\right)^{3 / 2}=1.93 N R\left(\frac{T}{T_{c}}\right)^{3 / 2}$
(d) Bose-Einstein condensation is different from ordinary vapour-liquid condensation in the way that no spatial separation into phases in BE gas.

