The answer for certain questions in this document is incomplete. Would you like to help us complete it? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ©

PART 1

Question 1 (i)

The energy of dipole aligned to B field is $-\mu B$ while anti-parallel alignment results in energy of μB. So,

$$
\begin{aligned}
E=-n \mu B+ & (6-n) \mu B \\
& =6 \mu B-2 n \mu B \\
& =2 \mu B(3-n)
\end{aligned}
$$

Question 1 (ii)

$\Omega(n)=\frac{N!}{n!(N-n)!}$
$\Omega(0)=1$

$$
\begin{aligned}
& \Omega(4)=15 \\
& \Omega(5)=6 \\
& \Omega(6)=1
\end{aligned}
$$

$\Omega(1)=6$
$\Omega(2)=15$
$\Omega(3)=20$
The largest multiplicity occurs for $n=3$, so the most likely macrostate of the system has 3 dipoles parallel and 3 anti-parallel to the B field. For this configuration, the energy associated with the B field for the system will be zero. The least likely states are where $n=0$ or $n=0$, meaning all dipoles are anti-parallel or parallel to the B field.

Question 2

Take ε_{1} to be the zero energy level and let $\varepsilon=\varepsilon_{2}-\varepsilon_{1}$ so $\varepsilon_{2}=\varepsilon$. Then, $Z_{1}=1+e^{-\beta \varepsilon}$ which is partition function for 1 particle.
$\ln Z_{1}=\ln \left(1+e^{-\beta \varepsilon}\right)$
$E_{1}=-\frac{\partial \ln Z_{1}}{\partial \beta}=\frac{\varepsilon e^{-\beta \varepsilon}}{1+e^{-\beta \varepsilon}}=\frac{\varepsilon}{e^{\beta \varepsilon}+1}$
$E(T, V, N)=\frac{N \varepsilon}{e^{\beta \varepsilon}+1}$
For very low $T, T \ll 1, \beta \gg 1$,
$E=N \varepsilon e^{-\beta \varepsilon} \Rightarrow 0$, meaning that most particles have energy ε_{1}.
For very high $T, T \gg 1, \beta \ll 1$, then
$e^{\beta \varepsilon}+1 \approx 1+\beta \varepsilon+1=2+\beta \varepsilon$, so,
$E=\frac{N \varepsilon}{e^{\beta \varepsilon}+1} \Rightarrow \frac{N}{2} \varepsilon$
So about half are in state with energy ε_{1}, half in state with energy ε_{2}.

Question 3 (i)

$Z_{1}=e^{\beta \mu B}+e^{-\beta \mu B}=2 \cosh \frac{\mu B}{k T}=2 \cosh x$
$\bar{\varepsilon}_{1}=-\frac{\partial \ln Z_{1}}{\partial \beta}=-\frac{\partial}{\partial \beta} \ln (2 \cosh x)=-\frac{\sinh x}{\cosh x} \mu B=-\mu B \tanh x$
$E(T)=-N \mu B \tanh x$
$\bar{\mu}=\mu \frac{1}{Z_{1}} e^{\beta \mu B}-\mu \frac{1}{Z_{1}} e^{-\beta \mu B}=\frac{\mu}{2 \cosh x} 2 \sinh x=\mu \tanh x$
$M=N \mu \tanh x$
The heat capacity of a system due to magnetic field is
$C_{H}=\left(\frac{d Q}{d T}\right)_{H}$
And energy is $E=-\mu H M$ excluding mutual field energy.
$d E=đ Q-M \mu_{0} d H$
$C_{H}=\left(\frac{\partial E}{\partial T}\right)_{H}=-\mu_{0} H\left(\frac{\partial M}{\partial T}\right)_{H}=-\mu_{0} H \frac{\partial}{\partial T} N \mu \tanh x=N \mu \mu_{0} H \operatorname{sech}^{2} x \frac{\mu B}{k T^{2}}$
Assuming applied magnetic field $\mu_{0} H$ and local field B is the same, $C_{H}=N k x^{2} \operatorname{sech}^{2} x$.

Question 3 (ii)

$\lim _{T \rightarrow 0} E=\lim _{x \rightarrow \infty}-N \mu \beta \tanh x=-N \mu \beta$
So all atoms are aligned.
$\lim _{T \rightarrow \infty} E=\lim _{x \rightarrow 0}-N \mu \beta \tanh x=0$
The atoms are randomly aligned.
For the heat capacities,
$\lim _{T \rightarrow 0} C_{H}=\lim _{x \rightarrow \infty} N k x^{2} \operatorname{sech}^{2} x=\lim _{x \rightarrow \infty} \frac{N k x^{2}}{\cosh ^{2} x}$
By L'Hôpital's rule,
$\lim _{x \rightarrow \infty} \frac{N k x^{2}}{\cosh ^{2} x}=N k \lim _{x \rightarrow \infty} \frac{x}{\cosh x \sinh x}=N k \lim _{x \rightarrow \infty} \frac{1}{\sinh ^{2} x+\cosh ^{2} x}=N k \lim _{x \rightarrow \infty} \frac{1}{1+2 \sinh ^{2} x}=0$
In agreement with $3^{\text {rd }}$ Law.

Question 4 (i)

Energy gained by $\mathrm{A}=$ Energy lost by B .

$$
\int_{T_{A}}^{T} C_{A} d T=-\int_{T_{B}}^{T} C_{B} d T
$$

$$
\begin{aligned}
& C_{A}\left(T-T_{A}\right)=C_{B}\left(T_{B}-T\right) \\
& T\left(C_{A}+C_{B}\right)=C_{A} T_{A}+C_{B} T_{B} \\
& T=\frac{C_{A} T_{A}+C_{B} T_{B}}{C_{A}+C_{B}}
\end{aligned}
$$

Question 4 (ii)

Using a reversible path,
$\Delta S_{A}=\int_{T_{A}}^{T} \frac{C_{A}}{T} d T=C_{A} \ln \frac{T}{T_{A}}$
Similarly,
$\Delta S_{B}=C_{B} \ln \frac{T}{T_{B}}$
$\Delta S=C_{A} \ln \frac{T}{T_{A}}+C_{B} \ln \frac{T}{T_{B}}$

Question 4 (iii)

If $T_{A}=T_{B}, T=T_{A}$, then
$\Delta S=C_{A} \ln \frac{T_{A}}{T_{A}}+C_{B} \ln \frac{T_{A}}{T_{B}}=0$
Otherwise,
$\Delta S=C_{A} \ln \frac{C_{A} T_{A}+C_{B} T_{B}}{T_{A}\left(C_{A}+C_{B}\right)}+C_{B} \ln \frac{C_{A} T_{A}+C_{B} T_{B}}{T_{B}\left(C_{A}+C_{B}\right)}$
We are given $\ln x \leq x-1$
$1-x \leq-\ln x$
$1-x \leq \ln \frac{1}{x}$
$\Delta S \geq C_{A}\left[1-\frac{T_{A}\left(C_{A}+C_{B}\right)}{C_{A} T_{A}+C_{B} T_{B}}\right]+C_{B}\left[1-\frac{T_{B}\left(C_{A}+C_{B}\right)}{C_{A} T_{A}+C_{B} T_{B}}\right]$
$=C_{A} \frac{C_{B} T_{B}-C_{B} T_{A}}{C_{A} T_{A}+C_{B} T_{B}}+C_{B} \frac{C_{A} T_{A}-C_{A} T_{B}}{C_{A} T_{A}+C_{B} T_{B}}$
$=0$

Question 5 (i)
Question 5 (ii)
Question 5 (iii)

Question 6 (i)

$\lim _{T \rightarrow 0} \beta=\lim _{T \rightarrow 0} \frac{1}{k T}=\infty$
So, at $T=0 K$,
$d N(\varepsilon)=\frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} d \varepsilon$ for $\varepsilon<\mu(0)=\varepsilon_{F}$. So,
$N=\int_{0}^{\varepsilon_{F}} \frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} d \varepsilon=\frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \frac{2}{3} \varepsilon_{F}^{\frac{3}{2}}$
$E=\frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \int_{0}^{\varepsilon_{F}} \varepsilon^{\frac{3}{2}} d \varepsilon=\frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \frac{2}{5} \varepsilon_{F}^{\frac{5}{2}}=\frac{4 \pi V}{h^{3}}(2 m)^{\frac{3}{2}} \frac{2}{3} \varepsilon_{F}^{\frac{3}{2}} \frac{3}{5} \varepsilon_{F}=\frac{3}{5} N \varepsilon_{F}$

Question 6 (ii)

At $T=0 K, F=E-T S=E$
$P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\left(\frac{\partial E}{\partial V}\right)_{T, N}$
$E=\frac{3}{5} N \frac{h^{2}}{2 m}\left(\frac{3}{8 \pi} \frac{N}{V}\right)^{\frac{2}{3}}=\frac{3 h^{2}}{10 m}\left(\frac{3}{8 \pi}\right)^{\frac{2}{3}} \frac{N^{\frac{5}{3}}}{V^{\frac{2}{3}}}$
$P=\frac{2 h^{2}}{10 m}\left(\frac{3}{8 \pi}\right)^{\frac{2}{3}}\left(\frac{N}{V}\right)^{\frac{5}{3}}=\frac{4}{10} \frac{h^{2}}{2 m}\left(\frac{3}{8 \pi} \frac{N}{V}\right)^{\frac{2}{3}} \frac{N}{V}=\frac{2}{5} \varepsilon_{F} n$

Question 6 (iii)

$1 \mathrm{erg}=10^{-7} \mathrm{~J}$
$P=\frac{2}{5}\left(10^{-18} J\right)\left(5 \times 10^{28} \mathrm{~m}^{-3}\right)=2 \times 10^{10} \mathrm{~Pa}$

PART 2

Question 1 (a)

Clasius-Clapeyron Equation:
$\frac{d P}{d T}=\frac{L}{T \Delta V}$
Since volume of gas V_{2} far larger than volume of liquid/solid $V_{1}, \Delta V \approx V_{2}$. Also, we assume a perfect classical gas so $P V_{2}=n R T$.
$\frac{d \ln P}{d T}=\frac{1}{P} \frac{d P}{d T} \approx \frac{1}{P} \frac{L}{T V_{2}}=\frac{1}{P} \frac{L}{T} \frac{P}{n R T}=\frac{L}{n R T^{2}}$
$d \ln P=\frac{L}{n R T^{2}} d T$
For 1 mol, we get
$d \ln P=\frac{L}{R T^{2}} d T$
$\ln P=-\frac{L}{R T}+k$
$P=P_{0} e^{-\frac{L}{R T}}$
Where k is a constant and $P_{0}=P(T=0)$.

Question 1 (b) i)

At the triple point,
$23.03-\frac{3754}{T}=1.949-\frac{3063}{T}$
$23.03 T-3754=19.49 T-3063$
$3.54 T=691$
$T=195.2 \mathrm{~K}$

Question 1 (b) ii)

To find $L_{\text {sub }}$, we use C-C equation on the equation given:
$\frac{L_{\text {sub }}}{R T^{2}}=\frac{d}{d T}\left(23.03-\frac{3754}{T}\right)=\frac{3754}{T^{2}}$
$L_{\text {sub }}=31210 \mathrm{~J} \mathrm{~mol}^{-1}$
To find $L_{\text {vap }}$, similarly
$\frac{L_{v a p}}{R T^{2}}=\frac{d}{d T}\left(19.49-\frac{3063}{T}\right)=\frac{3063}{T^{2}}$
$L_{\text {vap }}=25466 \mathrm{~J} \mathrm{~mol}^{-1}$
Since we are talking about state functions,
$\Delta S_{\text {sub }}=\Delta S_{\text {vap }}+\Delta S_{\text {melt }}$
$L_{\text {melt }}=57455 \mathrm{~mol}^{-1}$

Question 2 (i)

$E(T)=u V=a T^{4} V, \quad P=\frac{a}{3} T^{4}$,
$d E=4 a T^{3} V d T+a T^{4} d V$,
Substitute (1) and (2) into the fundamental thermodynamic relation,
$T d S=4 a T^{3} V d T+a T^{4} d V+\frac{a}{3} T^{4} d V$
$d S=4 a T^{2} V d T+\frac{4}{3} a T^{3} d V$
Now, $\quad d S=d\left(\frac{4}{3} a T^{3} V\right)$, so
$S=\frac{4}{3} a T^{3} V+A$
where A is a constant. But by third law, $S(T=0)=0$, so $A=0$ and therefore $S=\frac{4}{3} a T^{3} V$.

Question 2 (ii)

$H=E+P V=a T^{4} V+\frac{a}{3} T^{4} V=\frac{4}{3} a T^{4} V$
$F=E-T S=a T^{4} V-\frac{4}{3} a T^{4} V=-\frac{1}{3} a T^{4} V$
$G=E+P V-T S=\frac{4}{3} a T^{4} V-\frac{4}{3} a T^{4} V=0$

Question 2 (iii)

$\mu=\left(\frac{\partial G}{\partial H}\right)_{T, P}=0$
So $\varepsilon_{F}=0$ and at $T=0 \mathrm{~K}$, all particles are at the zero energy level.

Question 3 (a)

We begin from the definition of the grand potential, which is
$\Omega=-k T \ln Z$, with $Z(T, V, \mu)=\sum_{N_{r}} e^{\beta\left(\mu N-E_{N_{r}}\right)}$
$\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V}=-\frac{k T}{Z} \sum_{N_{r}} \beta N e^{\beta\left(\mu N-E_{N_{r}}\right)}=-\sum_{N_{r}} N P_{N_{r}}=-\bar{N}$
So $\bar{N}=-\frac{\partial \Omega}{\partial \mu}$
$\left(\frac{\partial^{2} \Omega}{\partial \mu^{2}}\right)_{T, V}=-\left(\frac{\partial \bar{N}}{\partial \mu}\right)_{T, V}=-\sum_{N_{r}} N\left(\frac{\partial P_{N_{r}}}{\partial \mu}\right)_{T, V}$,
Observe that

$$
\begin{align*}
\frac{1}{P_{N_{r}}}\left(\frac{\partial P_{N_{r}}}{\partial \mu}\right)_{T, V} & =\left(\frac{\partial \ln P_{N_{r}}}{\partial \mu}\right)_{T, V} \\
& =\frac{\partial}{\partial \mu}\left[\beta \mu N-\beta E_{N_{r}}-\ln Z\right]_{T, V} \\
& =\beta N-\frac{\partial \ln Z}{\partial \mu} \\
& =\beta N-\beta\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V} \\
& =\beta N-\beta \bar{N}, \tag{2}
\end{align*}
$$

Sub (2) into (1),

$$
\left(\frac{\partial^{2} \Omega}{\partial \mu^{2}}\right)_{T, V}=-\sum_{N_{r}} N P_{N_{r}}(\beta N-\beta \bar{N})=-\beta \sum_{N_{r}} N^{2} P_{N_{r}}+\beta \sum_{N_{r}} N \bar{N} P_{N_{r}}=-\beta \overline{N^{2}}+\beta \bar{N}^{2}
$$

$(\Delta N)^{2}=\overline{N^{2}}+\bar{N}^{2}=-k T\left(\frac{\partial^{2} \Omega}{\partial \mu^{2}}\right)_{T, V}, \quad \Delta N=\sqrt{-k T\left(\frac{\partial^{2} \Omega}{\partial \mu^{2}}\right)_{T, V}}$

Question 3 (b)

$Z=\sum_{N r} e^{\beta\left(\mu N-E_{N_{r}}\right)}=\sum_{N} e^{\beta \mu N} \sum_{r} e^{-\beta E_{N_{r}}}=\sum_{\mu} e^{\beta \mu N} Z(T, V N)$
For a perfect classical gas,
$Z(T, V, N)=\frac{1}{N!}\left[Z_{1}(T, V)\right]^{N}$
$Z(T, V, \mu)=\sum_{N} \frac{1}{N!}\left[e^{\beta \mu} Z_{1}(T, V)\right]^{N}=e^{e^{\beta \mu} Z_{1}(T, V)}$
$\Omega=-P V=-k T \ln Z=-k T e^{\beta \mu} Z_{1}(T, V)$
But $N=-\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V}=e^{\beta \mu} Z_{1}(T, V)$
$\therefore P V=N k T$
[Answer incomplete...]

Solutions provided by: Tan Mao Tian
© 2012, NUS Physics Society

