NATIONAL UNIVERSITY OF SINGAPORE

PC2230 Thermodynamics and Statistical Mechanics

(Semester II: AY2009-10, May)

Time Allowed: Two Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **SIX SHORT** questions in Part I and **THREE LONG** questions in Part II. It comprises **NINE** printed pages.
- 2. Answer **ALL** questions in Part I. The answers to Part I are to be written on the question paper itself and submitted at the end of the examination.
- 3. Answer any **TWO** of the questions in Part II. The answers to Part II are to be written on the answer books.
- 4. This is a CLOSED BOOK examination. Students are allowed to bring in an A4-sized (both sides) sheet of notes.
- 5. The total mark for Part I is 48 and that for Part II is 52.

Matriculation No.	Marks

PART I

THIS PART OF THE EXAMINATION PAPER CONTAINS SIX (6) SHORT-ANSWER QUESTIONS FROM PAGE 2 TO 7.

Answer ALL questions. The answers are to be written on this question paper itself and submitted at the end of the examination.

- 1. Consider a system of 6 spin $\frac{1}{2}$ dipoles in a magnetic field B.
 - (i) Show that the energy of the system is determined by n, the number of dipoles which are oriented parallel to B.
 - (ii) Obtain the number of microstates $\Omega(n)$ for each macrostate specified by n for n = 0 to 6. Comment on the results.

2. A system consists of N weakly interacting particles, each of which can be in either one of the two non-degenerate states with respective energies ε_1 and ε_2 , where $\varepsilon_1 < \varepsilon_2$. Calculate the mean energy E of the system as a function of its temperature T. Determine E in the limits of very low and very high temperatures.

- 3. A system of N atoms, each having spin $\frac{1}{2}$ and magnetic moment μ , is located in an external magnetic field B and is in equilibrium at temperature T.
 - (i) Calculate the mean energy E(T) and heat capacity C(T) of the system. Express your results in terms of hyperbolic functions.
 - (ii) Find the limiting values of E(T) and C(T) as $T \to 0$ and $T \to \infty$.

- 4. Two systems A and B with respective heat capacities C_A and C_B are initially at respective temperatures T_A and T_B . The systems are now placed in thermal contact with each other and attain their final equilibrium at temperature T.
 - (i) Find T in terms of T_A , T_B , C_A and C_B .
 - (ii) Calculate the entropy changes ΔS_A of A, ΔS_B of B and ΔS of the combined system.
 - (iii) Show explicitly that ΔS can never be negative and that it will be zero if $T_A = T_B$. (Note $\ln x \le x - 1$)

- 5. Consider a system in thermal equilibrium at temperature T.
 - (i) If the Hamiltonian H of the system is of the form $H = A\xi^2$, where ξ is a position or momentum coordinate, show that the mean energy of the system $A\xi^2$ is given by $\frac{1}{2}kT$.
 - (ii) What is the mean energy of the system if $H = A\xi^4$?
 - (iii) Determine the mean energy of the system if $H = \frac{p^2}{2m} + bq^4$, where p and q are respectively the momentum and position coordinates.

6. The energy distribution of a free electron gas is given by

$$dN(\varepsilon) = \frac{4\pi V}{h^3} (2m)^{\frac{3}{2}} \varepsilon^{\frac{1}{2}} \frac{1}{e^{\beta(\varepsilon-\mu)} + 1} d\varepsilon .$$

- (i) Show that at T = 0K, the mean energy E and total number of electrons N of the gas are related by $E = 3N\varepsilon_F/5$, where ε_F is the Fermi energy.
- (ii) Find the pressure in the gas at T = 0K. Express the result in terms of ε_F and n, the density of electrons in the gas.
- (iii) Estimate the pressure exerted by the conduction electrons in a typical metal, given $n \sim 5 \times 10^{22} \, cm^{-3}$, $\varepsilon_F \sim 1 \times 10^{-11}$ erg and $1 \, \text{atm} \sim 1 \times 10^6 \, dyn \, cm^{-2}$. Comment on the result.

PART II

THIS PART OF THE EXAMINATION PAPER CONTAINS THREE (3) LONG QUESTIONS AND COMPRISES TWO PAGES.

Answer any TWO questions.

- 1. (a) Show that the pressure of a vapour in equilibrium with a liquid or solid at temperature T is approximately given by $P \approx P_o \exp(-L/RT)$. State clearly the approximations made in your derivation.
 - (b) The vapour pressure P in mmHg of a solid ammonia is given by $\ln P = 23.03 3754/T$, while that of liquid ammonia is given by $\ln P = 19.49 3063/T$.

Calculate

- (i) the temperature of the triple point of ammonia,
- (ii) the latent heats of sublimation, vaporization and melting of ammonia at the triple point.

$$R = 8.31 Jmol^{-1} K^{-1}$$

- 2. The total energy density of radiation u(T) within an opaque enclosure of volume V at a given temperature T is given by the Stefan-Boltzmann law $u(T) = aT^4$, where a is a constant. The radiation pressure P(T) = u(T)/3.
 - (i) Write down the expressions for the radiation energy E(T) and radiation pressure P(T) in the enclosure and apply to the fundamental thermodynamic relation TdS = dE + PdV. Show that the entropy S is given by $S = \frac{4}{3}aT^3V$.
 - (ii) Obtain expressions for the enthalpy H, the Helmholtz free energy F and Gibbs free energy G.
 - (iii) Show that the chemical potential μ of the radiation is zero. Comment on this result.

- 3. (a) Consider a system of N particles in contact with a heat bath/particle reservoir. Show that the mean number of particles \overline{N} and its standard deviation ΔN are given respectively by $\overline{N} = -\frac{\partial \Omega}{\partial \mu}$, $\Delta N = \left(-kT\frac{\partial^2 \Omega}{\partial \mu^2}\right)^{\frac{1}{2}}$, where Ω is the grand potential of the system.
 - (b) Write down the expression for Ω for an ideal classical gas in terms of single-particle partition function $Z_1(T,V)$. Obtain the equation of state of the gas and an explicit expression for the relative fluctuation in the number of particles in the gas. Comment on the relative fluctuation.

	Ng S C
END OF BARER	
END OF PAPER	