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The answer for certain questions in this document is incomplete. Would you like to help us complete it? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ☺      Question 1(a)Question 1(a)Question 1(a)Question 1(a)    $% &|$, (&〉 = $($ + 1)ℏ% &|$, (&〉 $- &|$, (&〉 = (ℏ&|$, (&〉 $% = $.% + $%% + $-%  Since 0$%, $±2 = 0, $%$4 &|$, (&〉 = $4$% &|$, (&〉 = $4$($ + 1)ℏ% &|$, (&〉 = $($ + 1)ℏ%($4 &|$, (&〉) $%$5 &|$, (&〉 = $($ + 1)ℏ%($5 &|$, (&〉)  $-$4 &|$, (&〉 = ($4$- + $4ℏ)&|$, (&〉 = $4(( + 1)ℏ&|$, (&〉 $-$5 &|$, (&〉 = $5(( − 1)ℏ&|$, (&〉  ∴ $4 &|$, (&〉 ∝ &|$, (& + 1〉, $5 &|$, (&〉 ∝ &|$, ( − 1&〉  We let $4 &|$, (&〉 = 94 &|$, ( + 1&〉, where 94 is an eigenvalue of $4. ;$, (|$5$4|$, (< = |94|%;$, ( + 1|$, ( + 1< = |94|% $5$4 = $% − ℏ$- − $-%  ;$, (|$5$4|$, (< = ;$, (|$% − ℏ$- − $-%|$, (< = $($ + 1)ℏ% − (ℏ% − (%ℏ% = 0$($ + 1) − ((( + 1)2ℏ% = |94|%  ∴ 94 = =$($ + 1) − ((( + 1)ℏ   Similarly, ;$, (|$4$5|$, (< = |95|%, $4$5 = $% + ℏ$- − $-% 95 = =$($ + 1) − ((( − 1)ℏ  ∴ $4 &|$, (&〉 = =$($ + 1) − ((( + 1)ℏ&|$, ( + 1&〉 $5 &|$, (&〉 = =$($ + 1) − ((( − 1)ℏ&|$, ( − 1&〉  $. = 12 ($4 + $5) 
;$, (|$.|$, (< = 12 ;$, (|$4 + $5|$, (< = 0 
$.% = 14 ($4 + $5)% = 14 ($4% + $4$5 + $5$4 + $5% )  ;$, (|$.%|$, (< = 14 ;$, (|$4% + $4$5 + $5$4 + $5% |$, (< 

= ℏ%4 0$($ + 1) − ((( + 1) + $($ + 1) − ((( − 1)2 
= 12 0$($ + 1) − (%2ℏ%          
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Question 1Question 1Question 1Question 1(b)(i)(b)(i)(b)(i)(b)(i)    
Ψ(BC, D) = 1√2 F− 1=GHI

JK5 L%MN8HI% sin P KQR + 1=GHI
JK5 L%MN8HI% sin P K5QRS KQ TUVMNℏW 

= − XJK5 L%MN sin P sin Y
2√GHI

Z% K5 L%MN4Q TUVMNℏW 
  Question 1Question 1Question 1Question 1(b)(ii)(b)(ii)(b)(ii)(b)(ii)    
[ = − e%J  〈[〉 = ;Ψ|[|Ψ< 

= − ] sin% P sin% Y4GHIZ J%K5 LMN e%J ^[ 
= − ] ] ] J-e% sin- P sin% Y4GHIZ K5 LMN%_

I ^Y_
I ^P`

I ^J 
= − e%4GHIZ ] HIa b JHIc- K5 LMN`

I ^ b JHIc ] sin- P_
I ^P ] sin% Y%_

I ^Y 
= − e%4GHIZ (6HIa) e2(2)%6 f (G) 
= − 2e%HI    Question 2(a)Question 2(a)Question 2(a)Question 2(a)(i)(i)(i)(i)    

g h%2( + 12 (i%J%j Ψ(B) = klΨ(B) 
ehm% + hn% + ho%2( + 12 (i%(B% + p% + q%)f r(B)s(p)t(q) = klr(B)s(p)t(q) 
 1r g− ℏ%2( u%ruB% + 12 (i%B%j + 1s g− ℏ%2( u%sup% + 12 (i%p%j + 1t g− ℏ%2( u%tuq% + 12 (i%q%j

= km + kn + ko 
kl = km + kn + ko = b32 + wc ℏi, w = wm + wn + wo   Question 2(a)(ii)Question 2(a)(ii)Question 2(a)(ii)Question 2(a)(ii)    Degeneracy,  $ = w, w − 2, w − 4, … ,0 or 1 
z{5.l4{5. = zll4% = (w + 2)!w! 2! = 12 (w + 2)(w + 1)           
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Question 2(a)(iii)Question 2(a)(iii)Question 2(a)(iii)Question 2(a)(iii)    ;J, P, Y|w, $, (< = |(J)s}~(P, Y)  Under space inversion, BC → −BC (J, P, Y) → (J, G − P, Y + G) s}~(P, Y) → (−1)}s}~(P, Y) ∴ parity is (−1)}          Question 2(b)(i)Question 2(b)(i)Question 2(b)(i)Question 2(b)(i)    Rotating a scalar quantity, 
� → ���� = g1 + X ��Cℏ j � g1 − X ��Cℏ j = � + eX ��Cℏ , �f 
Since � is unchanged in rotation, eX ��Cℏ , �f = ��C, �� = 0 
For the vector �Q , �Q → ���Q� = b1 + X ��oℏ c �Q b1 − X ��oℏ c = �Q + X�ℏ 0�o, �Q2  
The normal rotational matrix shows �o = �1 −� 0� 1 00 0 1� 
��m�n�o

� ⇒ �o ��m�n�o
� = ��m − ��n�n + ��m�o

� 
 Comparing with the above, we see that 0�o, �m2 = −Xℏ�n, ��o, �n� = Xℏ�m , 0�o, �o2 = 0 ∴ ��Q , ��� = X�Q�{ℏ�{      Question 2(b)(ii)Question 2(b)(ii)Question 2(b)(ii)Question 2(b)(ii)                
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Question 3Question 3Question 3Question 3    �.% &|�., (. &〉 = 2ℏ% &|�., (. &〉 = �.(�. + 1)ℏ% &|�., (. &〉 �.% + �. − 2 = 0   ⇒     �. = −2,1  �%% &|�%, (% &〉 = 34 ℏ% &|�%, (% &〉 = �%(�% + 1)ℏ% &|�%, (% &〉 
�%% + �% − 34 = 0   ⇒     �% = − 32 , 12     So we have �. = 1, �% = 12 . Using &|�, (&〉 ⇒ &|�., �%, (., (% &〉, we get 
&�32 , 32&〉 = &�1, 12 , 1, 12&〉 
&�32 , − 32&〉 = &�1, 12 , −1, − 12&〉  �5 = �.5 + �%5 �5 &|�, (&〉 = =�(� + 1) − ((( − 1)&|�, ( − 1&〉 = �.5 &|�., �%, (., (% &〉 + �%5 &|�., �%, (., (% &〉 = =�.(�. + 1) − (.((. − 1)&|�., �%, (. − 1, (% &〉 + =�%(�% + 1) − (%((% − 1)&|�., �%, (., (% − 1&〉  �5 &�32 , 32&〉 = &√3 �32 , 12&〉 = &√2 �1, 12& , 0, 12〉 + &�1, 12 , 1, − 12&〉 
∴ &�32 , 12&〉 = &�23 �1, 12& , 0, 12〉 + 1√3 &�1, 12 , 1, − 12&〉 
 �5 &�32 , 12&〉 = 2 &�32 , − 12&〉 

= &�23 �√2� �1, 12& , −1, 12〉 + 1√3 �√2� &�1, 12 , 0, − 12&〉 + &�23 (1) �1, 12& , 0, − 12〉 + 1√3 (0) &�1, 12 , 1, − 32&〉 
∴ &�32 , − 12&〉 = & 1√3 �1, 12& , −1, 12〉 + &�23 �1, 12& , 0, − 12〉 
 Now we  �ind &|�. − 1, �% − 1&〉 = &�12 , 12&〉 .     b� = 12 , ( = 12c 
&�12 , 12&〉 = � &�0, 12 , 0, 12&〉 + � &�0, 12 , 1, − 12&〉 |�|% + |�|% = 1 
�23 � + �13 � = 0 
⇒ � = −�13 , � = �23 
∴ &�12 , 12&〉 = −�13 &�1, 12 , 0, 12&〉 + �23 &�1, 12 , 1, − 12&〉 
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�5 &�12 , 12&〉 = &�12 , − 12&〉 
= −�13 &�√2

∴ &�12 , − 12&〉 = �13 &�0,
 To summarize, the complete set of simultaneous normalized eigenfunctions are:&�32 , 32&〉 = &�1, 12 , 1, 12&〉 
&�32 , 12&〉 = &�23 �1, 12& , 0
&�32 , − 12&〉 = & 1√3 �1, 12& ,
&�32 , − 32&〉 = &�1, 12 , −1
&�12 , 12&〉 = −�13 &�1, 12 ,
&�12 , − 12&〉 = �13 &�0, 12 p.s.: Alternatively, one can check the Clebsch

     Question 4Question 4Question 4Question 4(a)(i)(a)(i)(a)(i)(a)(i)    In quantum physics, since identical particles lose their individuality, thereone ket or bra vectors that can represent the same physical state of the system of identical particles. According to postulate 1, each physical state is completely described by a ket or bra vector in Hilbert space. This is not a problem fparticles. Since particles are indistinguishable, we findescribing the same physical state, since we could obtain a 2exchanging the quantum numbers odegeneracy.  It can be removed by introducing anti-symmetrized with respect to any permutation of N identical particles. 
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&〉 
&� 2� �1, 12 , −1, 12&〉 + �23 �√2� &�1, 12 , 0
&� , 12 , 0, − 12&〉 − �23 &�0, 12 , −1, 12&〉 

To summarize, the complete set of simultaneous normalized eigenfunctions are:&〉 
& 0, 12〉 + 1√3 &�1, 12 , 1, − 12&〉 

� & , −1, 12〉 + &�23 �1, 12& , 0, − 12〉 
1, − 12&〉 

&� , 0, 12&〉 + �23 &�1, 12 , 1, − 12&〉 
&� , 0, − 12&〉 − �23 &�0, 12 , −1, 12&〉 

ly, one can check the Clebsch-Gordan coefficient table:

 
In quantum physics, since identical particles lose their individuality, thereone ket or bra vectors that can represent the same physical state of the system of identical particles. According to postulate 1, each physical state is completely described by a ket or bra vector in Hilbert space. This is not a problem fparticles. Since particles are indistinguishable, we findescribing the same physical state, since we could obtain a 2exchanging the quantum numbers of the particles. This condition is known as exchange 
It can be removed by introducing Postulate VIIsymmetrized with respect to any permutation of N identical particles.
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& 0, − 12&〉 − �13 (1) &�1, 12 , 0, − 12&〉 + �
&〉

To summarize, the complete set of simultaneous normalized eigenfunctions are:

&
Gordan coefficient table: 

 
In quantum physics, since identical particles lose their individuality, there may be more than one ket or bra vectors that can represent the same physical state of the system of identical particles. According to postulate 1, each physical state is completely described by a ket or bra vector in Hilbert space. This is not a problem for individual particles, but for more than 2 particles. Since particles are indistinguishable, we find that we have 2 mathematical states describing the same physical state, since we could obtain a 2nd mathematical state by f the particles. This condition is known as exchange 

VII, insisting that states must be symmetrized or symmetrized with respect to any permutation of N identical particles. 
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& �23 (0) &�1, 12 , 1, − 32&〉 

To summarize, the complete set of simultaneous normalized eigenfunctions are: 

may be more than one ket or bra vectors that can represent the same physical state of the system of identical particles. According to postulate 1, each physical state is completely described by a ket or bra or individual particles, but for more than 2 d that we have 2 mathematical states mathematical state by f the particles. This condition is known as exchange 
, insisting that states must be symmetrized or 
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Question 4(a)(ii)Question 4(a)(ii)Question 4(a)(ii)Question 4(a)(ii)    Consider the Hamiltonian of a pair of particle and its anti-particle, e.g. electron and positron This Hamiltonian commutes with the permutation operator, but the states need not be symmetrized or anti-symmetrized.      Question 4(b)Question 4(b)Question 4(b)Question 4(b)(i)(i)(i)(i)    For distinguishable particles, ¥(B., B%) = ¥l(B.)¥}(B%).   Also, 〈(B. − B%)%〉 = 〈B%〉l + 〈B%〉} − 2〈B〉l〈B〉} , since 〈B〉l = ] ¥l∗(B)B¥l(B)^BM
I = 2H ] B sin% §wGBH ¨M

I ^B = H2 
〈B%〉l = ] ¥l∗(B)B%¥l(B)M

I ^B = 2H ] B% sin% §wGBH ¨ ^BM
I = H% ©13 − 12(wG)%ª 

 ∴ 〈(B. − B%)%〉 = H% ©13 − 12(wG)%ª + H% ©13 = 12($G)%ª − 2 H2 §H2¨ = H% b16 − 12w%G% − 12$%G%c  Question 4(b)(ii)Question 4(b)(ii)Question 4(b)(ii)Question 4(b)(ii)    If they are identical bosons, they wave function is: ¥4(B., B%) = 1√2 0¥l(B.)¥}(B%) + ¥}(B.)¥l(B%)2 
 Then the expectation value of (B. − B%)% is: 〈(B. − B%)%〉4 = ] ¥4∗ (B. − B%)%¥4

M
I ^B.^B% 

 Evaluate ¥4∗ ¥4: ¥4∗ ¥4 = 12 0¥l∗ (B.)¥}∗(B%) + ¥}∗(B.)¥l∗(B%)20¥l(B.)¥}(B%) + ¥}(B.)¥l(B%)2 
= 12 0¥l∗(B.)¥}∗(B%)¥l(B.)¥}(B%) + ¥l∗(B.)¥}∗(B%)¥}(B.)¥l(B%)+ ¥}∗(B.)¥l∗ (B%)¥l(B.)¥}(B%) + ¥}∗(B.)¥l∗(B%)¥}(B.)¥l(B%)2  Working out the expectation value of (B. − B%)%: 〈(B. − B%)%〉4 = ] (B. − B%)%¥4∗ ¥4

M
I ^B.^B% 

= ] (B. − B%)%0¥l∗(B.)¥}∗(B%)¥l(B.)¥}(B%) + ¥l∗(B.)¥}∗(B%)¥}(B.)¥l(B%)2M
I ^B.^B% 

= 〈(B. − B%)%〉¬Q­W + ] (B.% + B%% − 2B.B%)0¥l∗ (B.)¥}∗(B%)¥}(B.)¥l(B%)2M
I ^B.^B% 

= 〈(B. − B%)%〉¬Q­W − ] 2B.B%0¥l∗(B.)¥}∗(B%)¥}(B.)¥l(B%)2M
I ^B.^B% 

= 〈(B. − B%)%〉¬Q­W − 2 ] B.0¥l∗(B.)¥}(B.)2M
I ^B. ] B%0¥}∗(B%)¥l(B%)2M

I ^B% 
= 〈(B. − B%)%〉¬Q­W − 2 ] 4H% sin §wGB.H ¨ B. sin b$GB.H cM

I ^B. ] 4H% sin §wGB%H ¨ B% sin b$GB%H cM
I ^B% 

= 〈(B. − B%)%〉¬Q­W − 2 e] 4H% sin §wGBH ¨ B sin b$GBH cM
I ^Bf% 

= 〈(B. − B%)%〉¬Q­W − 2|〈B〉l}|% 
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= H% b16 − 12w%G% − 12$%G%c − 2 ® HG% 0(−1)l4} − 12 © 1(w − $)% − 1(w + $)%ª¯% 
= H% °16 − 12G% b 1w% − 1$%c − 32w%$%Ga(w% − $%)a 0(−1)l4} − 12%± 

  Question 4(b)(iii)Question 4(b)(iii)Question 4(b)(iii)Question 4(b)(iii)    If they are identical fermions, then the wave function is ¥5(B., B%) = 1√2 0¥l(B.)¥}(B%) − ¥}(B.)¥l(B%)2  Then the expectation value of (B. − B%)% is: 〈(B. − B%)%〉5 = ] ¥5∗ (B. − B%)%¥5
M

I ^B.^B% 
 Evaluate ¥5∗ ¥5: ¥5∗ ¥5 = 12 0¥l∗(B.)¥}∗(B%)¥l(B.)¥}(B%) − ¥l∗(B.)¥}∗(B%)¥}(B.)¥l(B%)− ¥}∗(B.)¥l∗ (B%)¥l(B.)¥}(B%) + ¥}∗(B.)¥l∗(B%)¥}(B.)¥l(B%)2  The expectation value of (B. − B%)%: 〈(B. − B%)%〉5 = 〈(B. − B%)%〉¬Q­W + 2|〈B〉l}|% 

= H% °16 − 12G% b 1w% − 1$%c + 32w%$%Ga(w% − $%)a 0(−1)l4} − 12%± 
   Solutions provided by: * Chang Sheh Lit (Q3, Q4b) * John Soo (Q1, Q2, Q4a)  © NUS Physics Society 


