NATIONAL UNIVERSITY OF SINGAPORE

PC3130 Quantum Mechanics II

(Semester II: AY 2008-09)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains four questions and comprises 4 printed pages.
- 2. Answer any three questions.
- 3. Answers to the questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.

1. (a) The operators ℓ^2 and ℓ_3 describe the square and the third component of the orbital angular operator ℓ respectively. Let $|\ell m\rangle$ be their common eigenstate.

Show that

$$\ell_{+} | \ell m \rangle = \sqrt{\ell(\ell+1) - m(m+1)} \, \hbar | \ell m + 1 \rangle$$

$$\ell_{-} | \ell m \rangle = \sqrt{\ell(\ell+1) - m(m-1)} \, \hbar | \ell m - 1 \rangle.$$

Here the operators ℓ_{+} and ℓ_{-} are defined by $\ell_{\pm} = \ell_{1} \pm i \ell_{2}$.

Hence show that the expectation value of ℓ_1 in the state $|\ell m\rangle$ vanishes but that of ℓ_1^2 is given by

$$\langle \ell m | \ell_1^2 | \ell m \rangle = \frac{1}{2} \left[\ell (\ell + 1) - m^2 \right] \hbar^2$$

(b) A hydrogen atom starts out in the following linear combination of the stationary states n = 2, $\ell = 1$, m = 1 and n = 2, $\ell = 1$, m = -1, with energy $E_2 = -e^2/(8a_0)$ and a_0 is the Bohr radius ($\sim 0.5 \times 10^{-10}$ m):

$$\Psi(\underline{x},0) = \frac{1}{\sqrt{2}} (\psi_{211} + \psi_{21-1}),$$

where $\psi_{21\pm 1} = \mp \frac{1}{\sqrt{\pi a_0}} \frac{1}{8a_0^2} r e^{-r/(2a_0)} \sin \theta e^{\pm i\phi}$ in the usual notations.

- (i) Construct the state at time $t, \Psi(x,t)$. Simplify it as much as you can.
- (ii) Calculate the expectation value of the potential energy, $\langle V \rangle$.
- 2. (a) Consider the three-dimensional harmonic oscillator, for which the potential is $V(r) = \frac{1}{2}m\omega^2 r^2$, where m is the mass of the particle and ω a positive constant.
 - (i) Show that separation of variables in Cartesian coordinates turns

this into three one-dimensional oscillators, and hence or otherwise, determine the allowed energy.

You may assume without proof that the energy of a onedimensional harmonic oscillator is $\left(n + \frac{1}{2}\right)\hbar \omega$.

- (ii) Obtain a formula for the degeneracy of the n^{th} excited stationary state. What are the allowed values of the orbital angular momentum quantum number ℓ ?
- (iii) What is the parity of the n^{th} excited stationary state?
- **(b)**(i) Define a scalar operator S and a vector operator K_i in quantum mechanics.

Deduce the commutation relations of the angular momentum operator J_i with the scalar operator S and with the vector operator K_i , respectively. Does S commute with K_i ?

You can assume without proof that for an infinitesimal angle ε , the rotation $\Re_n(\varepsilon)$ in three-dimensional physical space is given by

 $\Re_{n}(\varepsilon) = (1 + \varepsilon n \wedge)$. The rotation operator in the Hilbert space can be written as $R = \exp(-i\theta n.J/\hbar)$ in the usual notations.

- (ii) Write down and simplify the matrix element of the scalar operator S in the angular momentum basis $|\tau|_{jm}$.
- **3.** Obtain from first principles a complete set of simultaneous normalized eigenvectors of J_1^2 , J_2^2 , J_2^2 and J_3 , where $J = J_1 + J_2$, given simultaneous normalized eigenvectors $|j_1m_1\rangle$ and $|j_2m_2\rangle$ of J_1^2 , J_{13} and J_2^2 , J_{23} respectively such that

$$J_{-1}^{2}|j_{1}m_{1}\rangle = 2\hbar^{2}|j_{1}m_{1}\rangle,$$

$$J_{_{\sim 2}}^{2}\big|j_{2}m_{2}>=\frac{3}{4}\hbar^{2}\big|j_{2}m_{2}>.$$

- 4. (a)(i) What is exchange degeneracy and how is it removed?
 - (ii) The Hamiltonian of a physical system commutes with the permutation operator U_p , where p is a transposition. Explain whether this necessarily implies that the physical states of the system must be symmetrized or antisymmetrized.
 - (b) Two noninteracting particles, each of mass m, are in an infinite square well, V(x) = 0 for 0 < x < a and $V(x) = \infty$ otherwise. Suppose one of the particles is in the state $\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a)$, and the other particle in state $\psi_1(l \neq n)$. Write down the state of the two-particle system and compute the average value of their separation, namely $(x_1 x_2)^2$. In your calculation, you should distinguish three cases: (i) the particles are distinguishable, (ii) the particles are identical bosons, and (iii) the particles are identical fermions.

The following results can be used without proof:

$$\langle x \rangle_n = \int_0^a \psi_n^*(x) x \psi_n(x) dx = \frac{2}{a} \int_0^a x \sin^2 \left(\frac{n\pi x}{a} \right) dx = \frac{a}{2}$$

$$\langle x^2 \rangle_n = \int_0^a \psi_n^*(x) x^2 \psi_n(x) dx = a^2 \left(\frac{1}{3} - \frac{1}{2(n\pi)^2} \right)$$

$$\langle x \rangle_{nl} = \int_{0}^{a} \psi_{n}^{*}(x) x \psi_{l}(x) dx = \frac{a}{\pi^{2}} [(-)^{n+l} - 1] \left(\frac{1}{(n-l)^{2}} - \frac{1}{(n+l)^{2}} \right)$$