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INSTRUCTIONS TO CANDIDATES

1. This examination paper contains 4 questions and comprises 7 printed pages,
including a Table of the Clebsch-Gordan coefficients.

Answer any 3 questions.

All questions carry equal marks.

Answers to the questions are to be written in the answer books.

This is a CLOSED BOOK examination,
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1. (a) For a particle moving in a central potential field ¥(r), write down
the time- independent Schrodinger equation.

Making use of the spherical symmetry, briefly outline the steps that reduce this
equation to a one-dimensional radial equation.

Note: The following relations can be used without proof:
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(b) The energy eigenfunction of a three-dimensional simple harmonic
oscillator with energy E and angular momentum (£,m) can be written

as
Vn =277 0.6).

Here n is the principal quantum number related to the energy E, and Y (6,4) 15

the spherical harmonics. The radial function y(r) satisfies the following

differential equation
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where p* = m?wrz .
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Show that y(p)can be expressed as
) =p (P
Obtain the differential equation for the function ¥ () and find its solution
for the case {=n.
(¢) The simplest molecular crystals are formed from noble gases such as

neon, argon, krypton and xenon. The interaction between the ions in

such a molecular crystal is approximated by the Lennard-Jones



potential
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where the distancer=./x] +x; +x; , ¥, and o are the parameters for
the noble gases, e g for krypton, V,=0.014eV and o =36.5nm.

Find approximately the ground state energy of a single ion in such a

crystal.
Hint: The ion near the minimum value of the potential energy ¥ (»)

can be treated as a harmonic oscillator, the energy of a 3-dimensional

harmonic oscillator is Aw(n+ 3/2) in the usual notations.

2. (a) Define a symmetry transformation I/ in quantum mechanics.
Show that the symmetry transformation U has the following properties:
(1)U is unitary, i.e. U* =U""
(i) is linear or anti-linear: U (Alw)) = 2 Uy} or U(A|w)) = A Ulw).
(itD)If U does not depend on time explicitly, then [/, H]=0

where H is the Hamiltonian of the physical system under consideration.

(b)(i) Prove that, for a particle in a potential V(x), the rate of change of
the expectation value of the orbital angular momentum ¢is equal to

the expectation value of the torque

£()=().
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where ]y = ~}"l"€V(3f) =7 X A (?V(JNC)) =X A (WVV(?f)).
Note: The following relation can be used without proof:

—%(Q} = -;—([H .0 + <%€—> where Q is any operator and H is the
il

Hamiltonian.

(ii)Show that g}—@ - 0 for any spherically symmetric potential.

3. (a) Write down the infinitesimal rotation operator in three-dimensional physical

space and show that the corresponding infinitesimal rotation operator in

Hilbert space can be written as

R (g)y=1—ien Jih
where J= I+ s in the usual notations.

Hence show that a finite rotation operator in Hilbert space is given by

R (0)= exp(— f@ij‘-{/ﬁ)

(b) Show that for a spin 2 rotation operator, it can be written as

R, (8)= exp(— i@;:;-f/h) = cosg —i::z-crsing

where o is the Pauli matrix with

01 0 —i 10
o= ol o )0 Tl -1

Note: The following formula can be used without proof,



. . 1 . . .
{(¢) An eigenstate of the o, is given by [O J . Using the spin ' rotation

operator, show that an eigenstate of the spin operator »- o is given by

—ig/2

where the unit vector » is given by n = (sinfcosg, sin@sing, cosd) .

(d) Consider the decay of the particle A’ into a proton p and a pion z~,
A p+a

The pion has spin zero, the proton and A® each has spin Y2. The A° is
polarized with its spin in the up-state when it disintegrates. What is the
angular distribution of the disintegrations? That is, find the probability that
the proton is detected at angle @ with respect to the 3 coordinate axis,
x,-axis, given that (i)« is the probability amplitude of the disintegration
with the proton being detected along the positive x,-axis, namely, =0,
when the spin state of the A° is in the up-state and (ii)# is the
probability amplitude of the disintegration with the proton being detected

along the positive x,-~axis, namely, =0, when the spin state of the A°

is in the down-state .



4. (a) Consider two nop-identical particles, with angular momentum J} and
{2 respectively and the associated quantum numbers j,=j,=1. The Hamiltonian
for the system is given by
HS%( ‘{1 +{2)A{2 + % (J13+Jm)2
where E, and E, are constant having the dimension of energy and J=J, + { )

Find the energy levels and the energy cigenstates. Determine the degeneracies
of those states whose total angular momentum quantum number i j=j, + j,=2.

Note: Use the Table of the Clebsch-Gordan coefficients.

(b) Consider two non-interacting particles, both of mass m, in a one-

dimensional harmonic potential well
1 2.2
Vix)= 5 mae”x

The one-particle states are

I
MX%MJW{gETeZH*m, x = 2%,
Jnt 27 \ A7 h

with energies £, = (n +}£) he, n=0,12,.

Find the eigenfunctions and the corresponding energies of the ground state, the
first and second excited states of the two-particle system. You should
distinguish the two cases: (i) identical bosons, and (ii) identical fermions.
Write down the ground state wavefunction of three identical fermions in the

same potential well.

- The End -



Clebach-Gordan coefficients

CLEBSCH-GORDAN COEFFICIENTS,

SPHERICAL HARMONICS, AND d FUNCTIONS
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Pigure 20.1: Sign convention is that of Wigner {froup Theory, Acadomic Press, New York, 1959),
3, Roge {Blementary Theory of Apgular Momentum, Wiley,
ican Rockwell Science Center, Thousand Oaks, Calif, 1974%. Fhe signs and

Theory of Afemic Spectra, Cambridge Univ:. Press, New York, 1953
and Cohen [Tables of the Clebsch-Gordan Cpefficients, North Amer

numbersin the eurrent tables lave been caloulated by computer programs writhen indépendenily by Cohenand %t LBL.

also used by Condon and Shortley {The

New York, 1957},



