
PC3130 (AY2012/2013 sem 2)

Suggested solutions

Throughout this solution sheet, the notation will follow Einstein summation convention un-
less otherwise specified.

Question 1

1a. (AY2012/13 sem 2 notes, Chapter 1.1.2, page 14) Orbital angular momentum is defined

as ~L = ~x × ~p, i.e. it has components Li = εijkxjpk. It has the commutation relation
[Li, Lj] = i~εijkLk.

1ai.
[
Li, L

2
]

= [Li, LjLj] = [Li, Lj]Lj + Lj [Li, Lj]

= (i~εijkLk)Lj + Lj (i~εijkLk)
= i~ (εijkLkLj + εij′k′Lj′Lk′) (relabelling indices, j → j′, k → k′)

= i~ (εijkLkLj − εik′j′Lj′Lk′)
= i~ (εijkLkLj − εijkLkLj) (relabelling indices, k′ → j, j′ → k)

= 0

1aii. [Li, xj] = [εilmxlpm, xj] = εilm (xl [pm, xj] + [xl, xj] pm)

= εilm (xl (−i~δmj) + 0) since xl and xj commute

= −i~εiljxl
= i~εijlxl
= i~εijkxk (relabelling index, l→ k)

1aiii. [Li, pj] = [εilmxlpm, pj] = εilm (xl [pm, pj] + [xl, pj] pm)

= εilm (0 + (i~δlj) pm) since pm and pj commute

= i~εijmpm
= i~εijkpk (relabelling index, m→ k)[

L3, x
2
]

= [L3, xjxj] = [L3, xj]xj + xj [L3, xj]

= (i~ε3jkxk)xj + xj (i~ε3jkxk)
= i~ (ε3jkxkxj + ε3j′k′xj′xk′) (relabelling indices, j → j′, k → k′)

= i~ (ε3jkxkxj − ε3k′j′xj′xk′)
= i~ (ε3jkxkxj − ε3jkxkxj) (relabelling indices, k′ → j, j′ → k)

= 0
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[
L3, p

2
]

= [L3, pjpj] = [L3, pj] pj + pj [L3, pj]

= (i~ε3jkpk) pj + pj (i~ε3jkpk)
= i~ (ε3jkpkpj + ε3j′k′pj′pk′) (relabelling indices, j → j′, k → k′)

= i~ (ε3jkpkpj − ε3k′j′pj′pk′)
= i~ (ε3jkpkpj − ε3jkpkpj) (relabelling indices, k′ → j, j′ → k)

= 0

Since L3 commutes with x2 and p2 as shown above, it also commutes with any analytic func-

tion of x2 or p2. Hence we have

[
L3,

p2

2m

]
= 0 and [L3, V (r)] =

[
L3, V

(√
x2
)]

= 0, and

therefore [L3, H] =
[
L3,

p2

2m
+ V (r)

]
= [L3, V (r)] +

[
L3,

p2

2m

]
= 0.

1b. Since [Li, L
2] = 0 (as shown in part 1ai), we also have [L2

i , L
2] = 0. Also, by definition

L2 = L2
1 + L2

2 + L2
3. Therefore,[

L2
1, L

2
2

]
=
[
L2
1, L

2 − L2
1 − L2

3

]
=
[
L2
1, L

2
]
−
[
L2
1, L

2
1

]
−
[
L2
1, L

2
3

]
= 0− 0−

[
L2
1, L

2
3

]
=
[
L2
3, L

2
1

]
By symmetry (permuting indices) we also get [L2

3, L
2
1] = [L2

2, L
2
3], thus overall we have

[L2
1, L

2
2] = [L2

2, L
2
3] = [L2

3, L
2
1].

Within the l = 1 subspace, the |1,m〉 states with m = −1, 0, 1 form a complete basis. We
shall therefore show that the above commutators vanish for all angular momentum states with
l = 1 by showing 〈1,m′| [L2

1, L
2
3] |1,m〉 = 0 for all m,m′ = −1, 0, 1 (this necessarily implies

that the commutators vanish in the l = 1 subspace because any state in this subspace can
be expressed as some linear combination of the |1,m〉 states with m = −1, 0, 1).

We first recall that in terms of the raising/lowering operators, we have L1 =
L+ + L−

2
and

L2 =
L+ − L−

2i
. Therefore we have

L2
1 =

(
L+ + L−

2

)2

=
1

4

(
L2
+ + L2

− + L+L− + L−L+

)
L2
2 =

(
L+ − L−

2i

)2

= −1

4

(
L2
+ + L2

− − L+L− − L−L+

)
To reduce clutter in the following steps, we also note that within the l = 1 subspace, the
“normalisation constants” ~

√
l(l + 1)−m(m± 1) for the raising/lowering operators L± take

the value ~
√

2 in all non-zero cases (as seen by substituting l = 1, m = −1, 0, 1 into the
expression), i.e. we have L± |1,m〉 = ~

√
2 |1,m± 1〉 in all non-zero cases.
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For all m,m′ within the l = 1 subspace,

〈1,m′|
[
L2
1, L

2
3

]
|1,m〉 = 〈1,m′|L2

1L
2
3 − L2

3L
2
1 |1,m〉 = 〈1,m′|L2

1L
2
3 |1,m〉 − 〈1,m′|L2

3L
2
1 |1,m〉

= 〈1,m′|L2
1m

2 |1,m〉 − 〈1,m′|m′2L2
1 |1,m〉

=
(
m2 −m′2

)
〈1,m′|L2

1 |1,m〉

We now consider two cases, m = ±m′ and m 6= ±m′.

Case 1 (m = ±m′): We have (m2 −m′2) = 0 and therefore 〈1,m′| [L2
1, L

2
3] |1,m〉 = 0.

Case 2 (m 6= ±m′): We first note that this necessarily implies exactly one of m,m′ is 0 (and
the other is ±1), since the only values they can take are −1, 0, 1. If m = 0, then L2

± |1,m〉 = 0
(since applying the raising/lowering operator twice to the m = 0 state in the l = 1 subspace
gives zero) and thus 〈1,m′|L2

± |1,m〉 = 0. If m′ = 0, then since L2
± |1,∓1〉 = 2~2 |1,±1〉 and

L2
± |1,±1〉 = 0, we must have 〈1,m′|L2

± |1,m〉 = 0 (because the |1,±1〉 states are orthogonal
to the |1, 0〉 state).

(Alternative for m′ = 0: L+ and L− are the Hermitian conjugates of each other (since L1

and L2 are Hermitian), and thus 〈1, 0|L2
± =

((
L2
±
)† |1, 0〉)† =

(
L2
∓ |1, 0〉

)†
= 0. Therefore

〈1,m′|L2
± |1,m〉 = 0 for m′ = 0.)

Thus for this case,

〈1,m′|L2
1 |1,m〉 =

1

4
〈1,m′|

(
L2
+ + L2

− + L+L− + L−L+

)
|1,m〉

=
1

4
(0 + 0 + 〈1,m′|L+L− |1,m〉+ 〈1,m′|L−L+ |1,m〉)

=
1

4

(
(2~2 or 0)〈1,m′|1,m〉+ (0 or 2~2)〈1,m′|1,m〉

)
= 0 since m 6= ±m′ implies m 6= m′ and thus 〈1,m′|1,m〉 = 0

and therefore 〈1,m′| [L2
1, L

2
3] |1,m〉 = 0.

Since the cases considered cover all possibilities, we have 〈1,m′| [L2
1, L

2
3] |1,m〉 = 0 for all

m,m′ within the l = 1 subspace. Therefore [L2
1, L

2
3] vanishes within this subspace, and so do

the other two commutators (since they are equal).

The |1,−1〉, |1, 0〉 and |1, 1〉 states form a complete basis for the l = 1 subspace, and we shall
hence express the common eigenstates of L2

1, L
2
2 and L2

3 (common eigenstates exist because
these operators commute, as shown above) in terms of these states. As there are three states
in the basis, the subspace has dimension 3.

We first note that |1,−1〉, |1, 0〉 and |1, 1〉 are eigenstates of L2
3 with eigenvalues ~2, 0 and ~2

respectively, i.e. |1,−1〉 and |1, 1〉 have the same eigenvalue, while |1, 0〉 has a different one.
Since they form a basis, one of the common eigenstates must be simply |1, 0〉 itself, because
any linear combination of |1, 0〉 with |1,−1〉 and/or |1, 1〉 would not be an eigenstate of L2

3

(unless the coefficients for |1,−1〉 and |1, 1〉, or |1, 0〉, are zero); this is easily seen by applying
L2
3 to such a linear combination (noting the different eigenvalues).
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By a similar line of reasoning, the remaining two common eigenstates must be linear com-
binations of |1,−1〉 and |1, 1〉 only, because adding a non-zero |1, 0〉 component to such a
linear combination would render it not an eigenstate of L2

3. We also note that since |1,−1〉
and |1, 1〉 have the same eigenvalue (with respect to L2

3), any linear combination of them is
automatically an eigenstate of L2

3. It thus only remains to find out what linear combinations
of the form a |1, 1〉 + b |1,−1〉 are eigenstates of both L2

1 and L2
2. (a and b may be complex,

but one of them can be chosen to be real and positive without loss of generality, because the
global phase has no physical significance.)

To be an eigenstate of L2
1, we require

L2
1 (a |1, 1〉+ b |1,−1〉) = λ (a |1, 1〉+ b |1,−1〉)

1

4

(
L2
+ + L2

− + L+L− + L−L+

)
(a |1, 1〉+ b |1,−1〉) = λa |1, 1〉+ λb |1,−1〉

1

4

(
0 + 2~2b |1, 1〉+ 2~2a |1,−1〉+ 0 + 2~2a |1, 1〉+ 0 + 0 + 2~2b |1,−1〉

)
= λa |1, 1〉+ λb |1,−1〉

~2

2
((a+ b) |1, 1〉+ (a+ b) |1,−1〉) = λa |1, 1〉+ λb |1,−1〉

This gives us the system of equations ~2
2

(a+ b) = λa, ~2
2

(a+ b) = λb. Subtracting the second
equation from the first, we get λ (a− b) = 0, with the solutions

a = b: Then ~2
2

(a+ a) = λa, and so λ = ~2. Choosing a to be real and positive without loss
of generality, and normalising the state, we have a = 1√

2
, b = 1√

2
.

λ = 0: Then ~2
2

(a+ b) = 0, and so a = −b. Choosing a to be real and positive without loss
of generality, and normalising the state, we have a = 1√

2
, b = − 1√

2
.

Therefore, the linear combinations of |1,−1〉 and |1, 1〉 that are also eigenstates of L2
1 are

1√
2
|1,−1〉 ± 1√

2
|1, 1〉 (or scalar multiples thereof). They have different eigenvalues with

respect to L2
1, are orthogonal to each other and |1, 0〉 (and thus together with |1, 0〉 must

be a basis for this subspace, as it has dimension 3), and we have shown earlier that |1, 0〉
must be one of the common eigenstates of L2

1, L
2
2 and L2

3; hence, they must be precisely the
common eigenstates we are looking for (the two common eigenstates other than |1, 0〉 cannot
be a linear combination of both these two states, because such a combination would not be
an eigenstate of L2

1 due to the different eigenvalues). (Alternatively, one can explicitly verify
this by applying L2

2 to these states and showing they are indeed eigenstates of L2
2.)

In summary, the common eigenstates of L2
1, L

2
2 and L2

3 are |1, 0〉, 1√
2
|1,−1〉 + 1√

2
|1, 1〉 and

1√
2
|1,−1〉 − 1√

2
|1, 1〉 (or scalar multiples thereof).

(Remark: It can be verified that with respect to each of the operators L2
1, L

2
2 and L2

3, two
of the common eigenstates have eigenvalue ~2 and one has eigenvalue 0, as expected by
symmetry. However, the state with eigenvalue 0 is different for each operator.)
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Question 2

2ai. The magnetic field in this case is constant and uniform, thus as stated in the question,
a possible magnetic vector potential is simply

~A =
1

2
~B × ~x =

1

2
(0, 0, B0)× (x1, x2, x3) =

B0

2
(−x2, x1, 0)

(Alternatively, by definition any vector field ~A that satisfies ∇ × ~A = ~B is a valid vector

potential, thus we can simply verify explicitly that ∇× ~A = ∇× B0

2
(−x2, x1, 0) = (0, 0, B0).)

We note also that this choice of magnetic vector potential follows the Coulomb gauge (i.e.

∇ · ~A = 0), since ∇ · B0

2
(−x2, x1, 0) = B0

2
(∂1(−x2) + ∂2(x1) + ∂3(0)) = 0.

2aii. This derivation is essentially identical to that presented in lecture (AY2012/13 sem 2
notes, Chapter 2) apart from the presence of an electric field in the z-direction, so some steps
have been skimmed over for brevity. Refer to notes for full details. Note, however, that the
energy levels as given in this question do not appear to be entirely correct unless additional
constraints are specified on the particle’s x3-motion, as described later.

The Hamiltonian is
(~p−q ~A)

2

2m
+ V (~x). We note that since ~p = −i~∇, we have by product rule

~p ·
(
~Aψ
)

=
(
~p · ~A

)
ψ + ~A · (~pψ). The

(
~p− q ~A

)2
term thus expands to give(

~p− q ~A
)2

= ~p2 + q2 ~A2 − q~p · ~A− q ~A · ~p

= ~p2 + q2 ~A2 − q
(
~p · ~A

)
− 2q ~A · ~p

= ~p2 + q2 ~A2 − 0− 2q ~A · ~p since
(
~p · ~A

)
= −i~∇ · ~A = 0 (Coulomb gauge)

= ~p2 + q2 ~A2 − 2q

(
1

2
~B × ~x

)
· ~p

= ~p2 + q2 ~A2 − q ~B · (~x× ~p)
= ~p2 + q2 ~A2 − q ~B · ~L

= ~p2 + q2
B2

0

4

(
(−x2)2 + x21 + 02

)
− q (0, 0, B0) · (L1, L2, L3)

= ~p2 +
q2B2

0

4

(
x21 + x22

)
− qB0L3

Since in this case V (~x) = 0, the Hamiltonian can thus be expressed as

H =
1

2m

(
~p2 +

q2B2
0

4

(
x21 + x22

)
− qB0L3

)
+ 0

= H2D +Hfree −
qB0

2m
L3

=

[
H2D −

qB0

2m
~ (N+ −N−)

]
+Hfree
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where H2D =
1

2m
(p21 + p22) +

q2B2
0

8m
(x21 + x22) is the Hamiltonian of a 2-dimensional harmonic

oscillator (in the x1-x2 plane) with angular frequency ω =

√
q2B2

0

4m2
=
qB0

2m
, and Hfree =

p23
2m

is the Hamiltonian of a 1-dimensional free particle (along the x3 axis).

Since the Hamiltonian can be separated into a sum of a Hamiltonian for motion in the x1-

x2 plane (this includes the
qB0

2m
L3 term) and a Hamiltonian for motion along the x3 axis,

the motions are uncoupled. We thus use the |n+, n−, k3〉 basis, where k3 is the wavenumber
associated with the free-particle motion along the x3 axis. Using this basis, the eigenvalues of

H2D are (n+ + n− + 1) ~ω, while the eigenvalues of −qB0

2m
~ (N+ −N−) are −qB0

2m
~ (n+ − n−).

However, the eigenvalues of Hfree can take any non-negative real value (namely,
~2k23
2m

). To

eliminate this energy, we need to either confine the particle to a plane parallel to the x1-x2
plane, or change to a reference frame such that the x3-component of the particle energy
vanishes. With this constraint, the eigenvalues of the Hamiltonian (and hence the allowed
energies) are then

E = (n+ + n− + 1) ~ω − qB0

2m
~ (n+ − n−) = (n+ + n− + 1) ~

qB0

2m
− (n+ − n−) ~

qB0

2m

= (2n− + 1) ~
qB0

2m

=

(
n− +

1

2

)
~
qB0

m

In summary, the allowed energies are thus E =

(
n+

1

2

)
~ω1 where ω1 =

qB0

m
and n is a

non-negative integer, as desired.

2b. Consider the electric dipole moment under the coordinate transformation ~x→ −~x. Since
this is only a change of coordinates, it does not affect the physical quantity 〈nlm| ~d |nlm〉.
(An alternative approach is to note that space inversion is a unitary operation, and thus we

have 〈nlm|′ ~d′ |nlm〉′ = 〈nlm|U †U ~dU †U |nlm〉 = 〈nlm| ~d |nlm〉.) Therefore, we have

〈nlm| ~d |nlm〉 = 〈nlm|′ ~d′ |nlm〉′ = 〈nlm|′ q~x′ |nlm〉′

= q 〈nlm| (−1)l (−~x) (−1)l |nlm〉
= q(−1)2l+1 〈nlm| ~x |nlm〉
= −q 〈nlm| ~x |nlm〉
= −〈nlm| ~d |nlm〉

Since 〈nlm| ~d |nlm〉 = −〈nlm| ~d |nlm〉, we must thus have 〈nlm| ~d |nlm〉 = 0.
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The third component of the electric dipole moment of the |ψ〉 = 1√
2

(|2, 0, 0〉+ |2, 1, 0〉) state
is given by

〈ψ| d3 |ψ〉 =
1

2
(〈2, 0, 0|+ 〈2, 1, 0|) d3 (|2, 0, 0〉+ |2, 1, 0〉)

=
1

2
(〈2, 0, 0| d3 |2, 0, 0〉+ 〈2, 0, 0| d3 |2, 1, 0〉+ 〈2, 1, 0| d3 |2, 0, 0〉+ 〈2, 1, 0| d3 |2, 1, 0〉)

=
1

2
(〈2, 0, 0| d3 |2, 1, 0〉+ 〈2, 1, 0| d3 |2, 0, 0〉) since 〈nlm| ~d |nlm〉 = 0 as shown earlier

=
1

2
(〈2, 0, 0| d3 |2, 1, 0〉+ 〈2, 0, 0| d3 |2, 1, 0〉∗) since x3 is Hermitian (an observable)

(Alternatively, the two terms could be evaluated individually if desired)

= Re (〈2, 0, 0| d3 |2, 1, 0〉)

We thus just need to evaluate 〈2, 0, 0| d3 |2, 1, 0〉, i.e. 〈2, 0, 0| qx3 |2, 1, 0〉:

〈2, 0, 0| qx3 |2, 1, 0〉 = 〈2, 0, 0| qr cos θ |2, 1, 0〉

= q

∫ (
R2,0(r)Y

0
0 (θ, φ)

)∗
r cos θ

(
R2,1(r)Y

0
1 (θ, φ)

)
d3r

= q

∫
4π

∫ ∞
0

(
R2,0(r)Y

0
0 (θ, φ)

)∗
r cos θ

(
R2,1(r)Y

0
1 (θ, φ)

)
r2 drdΩ

= q

(∫
4π

Y 0
0 (θ, φ)∗ cos θ Y 0

1 (θ, φ) dΩ

)(∫ ∞
0

R2,0(r)
∗R2,1(r)r

3 dr

)
= q 〈0, 0| cos θ |1, 0〉

(∫ ∞
0

R2,0(r)R2,1(r)r
3 dr

)
since R2,0(r) is real

= q

√
(1 + 0)(1− 0)

(2 + 1)(2− 1)

(
− 9√

3
a0

)
by the given formulae

= q

√
1

3

(
− 9√

3
a0

)
= −3qa0

Therefore 〈ψ| d3 |ψ〉 = Re (〈2, 0, 0| d3 |2, 1, 0〉) = −3qa0, as desired.

Important note: If you wish to evaluate
∫∞
0
R2,0(r)R2,1(r)r

3 dr explicitly rather than use
the provided result, note that the normalisation factor given in the question for the R2,1(r)
function is incorrect — it should be 1√

24
, not 1√

2
.

7



Question 3

3a. This derivation is essentially identical to that presented in lecture (AY2012/13 sem 2
notes, Chapter 4), so some steps have been skimmed over for brevity. Refer to notes for full
details.

Consider an arbitrary vector ~A rotated about the axis n̂ by an infinitesimal angle ε. Let the
change be denoted δ ~A, and the angle between ~A and n̂ be denoted θ.

The direction of δ ~A is perpendicular to both ~A and n̂, and thus can be specified by the unit

vector
n̂× ~A

|n̂× ~A|
=

n̂× ~A

| ~A| sin θ
.

The magnitude of δ ~A can be seen by geometry to be
(
| ~A| sin θ

)
ε.

Therefore we have δ ~A =
n̂× ~A

| ~A| sin θ

(
| ~A| sin θ

)
ε = εn̂× ~A, in other words ~A′ = ~A + εn̂× ~A =

(1 + εn̂×) ~A. The rotation operator <n̂(ε) in physical space is thus <n̂(ε) = 1 + εn̂×.

To find the rotation operator in Hilbert space, we use ψ′(~x′) = ψ(~x) and apply a Taylor
expansion since ε is infinitesimal:

ψ′(~x′) = ψ(~x) = ψ(<n̂(ε)−1~x′) = ψ(~x′ − εn̂× ~x′) = ψ(~x′)− ε(n̂× ~x′) · ∇ψ(~x′) +O(ε2)

Relabelling ~x′ as ~x, and recalling ~p = ~
i
∇ and ~L = ~x× ~p, we obtain

ψ′(~x) = ψ(~x)− ε(n̂× ~x) · ∇ψ(~x) +O(ε2) = ψ(~x)− i

~
ε ((n̂× ~x) · ~p)ψ(~x) +O(ε2)

= ψ(~x)− i

~
ε
(
n̂ · ~L

)
ψ(~x) +O(ε2)

Since ψ′(~x) = 〈~x|R |ψ〉, the coordinate representation Rc of R is hence Rc = 1− i

~
ε
(
n̂ · ~L

)
.

We now consider a multicomponent wavefunction ψi(~x). We then have ψ′i(~x
′) = πijψj(~x).

Repeating the previous procedure gives

ψ′i(~x) = πij

[
ψj(~x)− i

~
ε
(
n̂ · ~L

)
ψj(~x) +O(ε2)

]

We assume that for infinitesimal rotations, πij = δij −
i

~
ε
(
n̂ · ~S

)
ij

. This hence gives

ψ′i(~x) =

[
δij −

i

~
ε
(
n̂ · ~S

)
ij

] [
ψj(~x)− i

~
ε
(
n̂ · ~L

)
ψj(~x) +O(ε2)

]
= ψi(~x)− i

~
ε
(
n̂ · ~L

)
ψi(~x)− i

~
ε
(
n̂ · ~S

)
ij
ψj(~x) +O(ε2)

=

(
1− i

~
ε
(
n̂ · ~L

)
− i

~
ε
(
n̂ · ~S

))
ij

ψj(~x) +O(ε2)
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Defining ~J = ~L+ ~S and keeping terms to order ε, we have ψ′i(~x) =

(
1− i

~
ε
(
n̂ · ~J

))
ij

ψj(~x),

and therefore Rn̂(ε) = 1− i

~
ε
(
n̂ · ~J

)
.

To find the finite rotation operator, we use the fact that Rn̂(θ+ δθ) = Rn̂(δθ)Rn̂(θ). Letting
δθ be infinitesimal and applying the previous result, we hence have

Rn̂(θ + δθ) =

(
1− i

~
δθ
(
n̂ · ~J

))
Rn̂(θ) = Rn̂(θ)− i

~
δθ
(
n̂ · ~J

)
Rn̂(θ)

Rearranging terms gives us
Rn̂(θ + δθ)−Rn̂(θ)

δθ
= − i

~

(
n̂ · ~J

)
Rn̂(θ)

=⇒ d

dθ
Rn̂(θ) = − i

~

(
n̂ · ~J

)
Rn̂(θ)

=⇒ Rn̂(θ) = exp

(
− i
~
θ
(
n̂ · ~J

))

3b. Since the expectation value of an observable should remain unchanged under rotation,
we have 〈ψ|Q |ψ〉 = 〈ψ′|Q′ |ψ′〉, i.e. 〈ψ|Q |ψ〉 = 〈ψ|R†Q′R |ψ〉. Since this holds for any
arbitrary state |ψ〉, this implies Q = R†Q′R. As rotation is unitary, we have R−1 = R†, and
thus Q = R†Q′R =⇒ Q′ = RQR†.

By geometric considerations, we would expect J2 to transform to J2 cos θ − J1 sin θ under
a rotation of angle θ about the x3-axis. We shall now proceed to verify this algebraically,
using power series expansions. Noting that Rk̂(−θ) = e

i
~ θJ3 = Rk̂(θ)

†, we shall ease the
intermediate calculations slightly by instead showing that Rk̂(θ)

†J2Rk̂(θ) = J2 cos θ+J1 sin θ,
then substituting θ → −θ to obtain the desired result Rk̂(θ)J2Rk̂(θ)

† = J2 cos θ − J1 sin θ.

We first note that
d

dθ
Rk̂(θ) =

d

dθ
e−

i
~ θJ3 = − i

~
J3Rk̂(θ), and similarly

d

dθ
Rk̂(θ)

† =
i

~
J3Rk̂(θ)

†.

Also, since Rk̂(θ) has a power series expansion in terms of J3 and no other operators, it
commutes with J3 (similarly for Rk̂(θ)

†).

Denote Rk̂(θ)
†J2Rk̂(θ) as f(θ). We shall show by induction that

f (n)(θ) =

{
(−1)

n
2Rk̂(θ)

†J2Rk̂(θ) if n is even

(−1)
n−1
2 Rk̂(θ)

†J1Rk̂(θ) if n is odd

Denoting the above statement as P (n), we shall show the base case P (0) to be true, then
show that for any non-negative even number m, we have P (m) =⇒ P (m+1) =⇒ P (m+2),
thereby proving P (n) to be true for all n ∈ Z≥0 by induction.
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Base case P (0): f(θ) = (−1)0Rk̂(θ)
†J2Rk̂(θ) = Rk̂(θ)

†J2Rk̂(θ) is indeed true.

Inductive step: Assume P (m) is true for some non-negative even m. Then we have f (m)(θ) =
(−1)

m
2 Rk̂(θ)

†J2Rk̂(θ), and thus

f (m+1)(θ) =
d

dθ

(
(−1)

m
2 Rk̂(θ)

†J2Rk̂(θ)
)

= (−1)
m
2

((
d

dθ
Rk̂(θ)

†
)
J2Rk̂(θ) +Rk̂(θ)

†J2

(
d

dθ
Rk̂(θ)

))
= (−1)

m
2

((
i

~
J3Rk̂(θ)

†
)
J2Rk̂(θ) +Rk̂(θ)

†J2

(
− i
~
J3Rk̂(θ)

))
= (−1)

m
2

(
i

~

)(
Rk̂(θ)

†J3J2Rk̂(θ)−Rk̂(θ)
†J2J3Rk̂(θ)

)
since Rk̂(θ)

† commutes with J3

= (−1)
m
2

(
i

~

)
Rk̂(θ)

† (J3J2 − J2J3)Rk̂(θ)

= (−1)
m
2

(
i

~

)
Rk̂(θ)

† (−i~J1)Rk̂(θ) since [J3, J2] = −i~J1

= (−1)
m
2 Rk̂(θ)

†J1Rk̂(θ)

therefore P (m+ 1) is true (noting that m+ 1 is odd). We also hence have, similarly,

f (m+2)(θ) =
d

dθ

(
(−1)

m
2 Rk̂(θ)

†J1Rk̂(θ)
)

= (−1)
m
2

((
i

~
J3Rk̂(θ)

†
)
J1Rk̂(θ) +Rk̂(θ)

†J1

(
− i
~
J3Rk̂(θ)

))
= (−1)

m
2

(
i

~

)
Rk̂(θ)

† (J3J1 − J1J3)Rk̂(θ) since Rk̂(θ)
† commutes with J3

= (−1)
m+2

2 Rk̂(θ)
†J2Rk̂(θ) since [J3, J1] = i~J2

therefore P (m + 2) is true (noting that m + 2 is even). Hence we have shown that for any
non-negative even m, we have P (m) =⇒ P (m+ 1) =⇒ P (m+ 2).

Thus by induction, P (n) is true for all n ∈ Z≥0. We note that this in turn gives us

f (n)(0) =

{
(−1)

n
2Rk̂(0)†J2Rk̂(0) if n is even

(−1)
n−1
2 Rk̂(0)†J1Rk̂(0) if n is odd

=

{
(−1)

n
2 J2 if n is even

(−1)
n−1
2 J1 if n is odd

since Rk̂(0)† = Rk̂(0) = 1
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Finally, we consider the power series expansion of f(θ) (since the exponential function is
analytic) to obtain

f(θ) =
∞∑
n=0

(
θn

n!
f (n)(0)

)
=

∞∑
even n

(
θn

n!
(−1)

n
2 J2

)
+

∞∑
odd n

(
θn

n!
(−1)

n−1
2 J1

)
= J2

∞∑
even n

(
θn

n!
(−1)

n
2

)
+ J1

∞∑
odd n

(
θn

n!
(−1)

n−1
2

)
= J2 cos θ + J1 sin θ

Therefore we have shown that Rk̂(θ)
†J2Rk̂(θ) = J2 cos θ+J1 sin θ. Substituting θ → −θ gives

us Rk̂(θ)J2Rk̂(θ)
† = J2 cos θ − J1 sin θ, as expected.

(Remark: If known, the identity eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] ...

(see the Baker-Campbell-Hausdorff formula, which is related) can be used instead to derive
this desired result. The identity itself may be demonstrated by various methods such as
differentiating with respect to a parameter, or expanding eA and e−A as power series and
multiplying terms appropriately, or by an argument similar to the above procedure.)

Using the power series expansion of the exponential function, and recalling that Rk̂(θ) is
unitary (i.e. Rk̂(θ)

†Rk̂(θ) = Rk̂(θ)Rk̂(θ)
† = 1), we have

Rk̂(π)e−
i
~αJ2Rk̂(π)† = Rk̂(π)

(
∞∑
n=0

1

n!

(
− i
~
αJ2

)n)
Rk̂(π)†

=
∞∑
n=0

1

n!

(
−Rk̂(π)

i

~
αJ2Rk̂(π)†

)n
since Rk̂(π)†Rk̂(π) = 1

=
∞∑
n=0

1

n!

(
− i
~
α (J2 cosπ − J1 sin π)

)n
by the previous result

=
∞∑
n=0

1

n!

(
i

~
αJ2

)n
= e

i
~αJ2 , as desired.

(This method generalises to other functions with power series expansions as well.)
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Question 4

4a. This derivation is essentially identical to that presented in lecture (AY2012/13 sem 2
notes, Chapter 4), so some steps have been skimmed over for brevity. Refer to notes for full
details. To avoid confusion with the particle subscripts, this answer uses subscripts x, y, z
instead of 1, 2, 3 to denote the Cartesian components of the angular momenta.

We show that the components of ~J satisfy the angular momentum commutation relations
[Ji, Jj] = i~εijkJk, hence the eigenvalues of J2 and Jz can be written as j(j + 1)~2 and m~
respectively, where j is a non-negative integer or half-integer and m increases in integer steps
from −j to j (inclusive).

J2
1 , J2

2 , J1z and J2z commute and thus can have common eigenstates |α, j1, j2,m1,m2〉. We
show that Jz |α, j1, j2,m1,m2〉 = (m1 + m2)~ |α, j1, j2,m1,m2〉 (where Jz = J1z + J2z) and
thus |α, j1, j2,m1,m2〉 are also eigenstates of Jz, with eigenvalue (m1 +m2)~. Therefore, we
have m = m1 +m2.

We now use a counting method to find the allowed values of j in terms of j1 and j2. Let cm
be the number of states |j,m〉 for a fixed m, and dj be the number of states |j,m〉 for a fixed
m and j. We note that dj = 1 if and only if that particular combination of j,m is allowed,
and dj = 0 otherwise. Since |m| ≤ j and taking m ≥ 0, we have

cm = dm + dm+1 + dm+2 + ...

cm+1 = dm+1 + dm+2 + ...

and thus dm = cm − cm+1. Tabulating values of cm, we have

m1 m2 m = m1 + m2 cm
j1 j2 j1 + j2 1
j1 j2 − 1

j1 + j2 − 1 2
j1 − 1 j2
j1 j2 − n

j1 + j2 − n n+ 1...
...

j1 − n j2

From the table, we have cj1+j2 = 1, cj1+j2−1 = 2 and so on, increasing by one each time,
up until a certain point (to be discussed below). Therefore we have dj1+j2 = 1 − 0 = 1,
dj1+j2−1 = 2− 1 = 1, and so on, up until that point, i.e. those values of j are allowed.

cm stops increasing when the possible values of m1 in the first column and/or m2 in the second
column cover all values they can take (i.e. all values in integer steps from−j1 to j1 or−j2 to j2
respectively), whichever occurs first. It can be seen that this occurs after 2j1 and/or 2j2 steps,
whichever is smaller. The value of j at which this occurs is (j1+j2)−min(2j1, 2j2) = |j1−j2|,
thus we have dj = 0 from this point onwards. (Alternative: Draw a diagram as in the example
in the lecture notes.)

Therefore, the allowed values of j are j1 + j2, j1 + j2 − 1, ..., |j1 − j2|.
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4b. We recall that 〈j1, j2,m1,m2|j1, j2, j,m〉 = 0 whenever m 6= m1 +m2. For the
∣∣1, 1

2
, 3
2
, 3
2

〉
state, we have j1 = 1, j2 = 1

2
and m = 3

2
. Therefore, the only values of m1 and m2

which can satisfy m1 + m2 = m = 3
2

are m1 = 1 and m2 = 1
2
, since −j1 ≤ m1 ≤ j1 and

−j2 ≤ m2 ≤ j2. Hence, the coupled state in terms of the uncoupled states must simply be∣∣1, 1
2
, 3
2
, 3
2

〉
= |1, 1〉

∣∣1
2
, 1
2

〉
, since all the other coefficients are zero. (If desired, one can explicitly

verify using the formula provided that 〈1, 1
2
, 1, 1

2
|1, 1

2
, 3
2
, 3
2
〉 = 〈1, 1

2
, 3
2
− 1

2
, 1
2
|1, 1

2
, 1 + 1

2
, 3
2
〉 =√

1 + 3
2

+ 1
2

2(1) + 1
= 1, as expected.)

For the
∣∣1, 1

2
, 1
2
,−1

2

〉
state, we again have j1 = 1, j2 = 1

2
, but this time m = −1

2
can be

formed in two ways from sums of the possible values of m1 and m2, namely m1 = −1,m2 = 1
2

and m1 = 0,m2 = −1
2
. We evaluate the corresponding Clebsch-Gordan coefficients with the

provided formulae:

〈1, 1

2
,−1,

1

2
|1, 1

2
,
1

2
,−1

2
〉 = 〈1, 1

2
,−1

2
− 1

2
,
1

2
|1, 1

2
, 1− 1

2
,
3

2
〉 = −

√
1−

(
−1

2

)
+ 1

2

2(1) + 1
= −

√
2

3

〈1, 1

2
, 0,−1

2
|1, 1

2
,
1

2
,−1

2
〉 = 〈1, 1

2
,−1

2
+

1

2
,
1

2
|1, 1

2
, 1− 1

2
,
3

2
〉 =

√
1 +

(
−1

2

)
+ 1

2

2(1) + 1
=

√
1

3

The mod-squared sum of these coefficients is 1, as expected. (Again, 〈j1, j2,m1,m2|j1, j2, j,m〉 =
0 for the other values of m1,m2 since m 6= m1 +m2 for those values.) Therefore, the coupled

state in terms of the uncoupled states is
∣∣1, 1

2
, 1
2
,−1

2

〉
=
√

1
3
|1, 0〉

∣∣1
2
,−1

2

〉
−
√

2
3
|1,−1〉

∣∣1
2
, 1
2

〉
.

As seen from the above result, the coefficient for the component with the spin-1
2

particle (i.e.

the electron) in spin-down is
√

1
3
. Therefore, the probability of measuring the electron spin

to be down is 1
3
.

(Remark: One can verify against a table of Clebsch-Gordan coefficients that these are indeed
the correct values for the coefficients.)

4c. For ease of notation, we shall denote the nth-energy-level one-particle wavefunctions by

ψn(xi) =
√

2
b

sin
(
nπxi
b

)
.

Since the particles have half-integer spin, they are fermions. Therefore, the state must be
antisymmetric under particle interchange, and the particles must all be in different states.
As the particles are assumed to all be in the same spin state, the spatial wavefunction must
be antisymmetric and the one-particle wavefunctions must all be different.
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Therefore, the wavefunction of the ground state φ0 is

φ0(x1, x2, x3) =
1√
6

(ψ1(x1)ψ2(x2)ψ3(x3) + ψ2(x1)ψ3(x2)ψ1(x3) + ψ3(x1)ψ1(x2)ψ2(x3)

−ψ1(x1)ψ3(x2)ψ2(x3)− ψ3(x1)ψ2(x2)ψ1(x3)− ψ2(x1)ψ1(x2)ψ3(x3))

with energy (12 + 22 + 32)
~2π2

2mb2
= 14

~2π2

2mb2
.

The wavefunction of the first excited state φ1 is

φ1(x1, x2, x3) =
1√
6

(ψ1(x1)ψ2(x2)ψ4(x3) + ψ2(x1)ψ4(x2)ψ1(x3) + ψ4(x1)ψ1(x2)ψ2(x3)

−ψ1(x1)ψ4(x2)ψ2(x3)− ψ4(x1)ψ2(x2)ψ1(x3)− ψ2(x1)ψ1(x2)ψ4(x3))

with energy (12 + 22 + 42)
~2π2

2mb2
= 21

~2π2

2mb2
.

Solutions provided by: Ernest Tan
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