PC3231 Electricity and Magnetism 2 (Semester 1: AY 2011-12)

I. Elecric field in matter

(i) Applying the Gauss's law in dielectic, $D=\sigma$ in each slab. Note that $D=0$ inside the metal parallel plate.
(ii) Dielectric constant is another name for relative permittivity ϵ_{r}. Using $D=\epsilon E$ and $\epsilon=\epsilon_{r} \epsilon_{0}, E_{1}=\frac{\sigma}{2 \epsilon_{0}}$ for slab 1 and $E_{2}=\frac{2 \sigma}{3 \epsilon_{0}}$ for slab 2.
(iii) Using $P=\epsilon_{0} \chi_{e} E$ and $\chi_{e}=1+\epsilon_{r}, P_{1}=\frac{\sigma}{2}$ for slab 1 and $P_{2}=\frac{\sigma}{3}$ for slab 1.
(iv) Potential difference $V=E_{1} a+E_{2} a=\frac{7 \sigma a}{6 \epsilon_{0}}$.
(v) Volume bound charge density $\rho_{b}=0$ as the polarisation is uniform. At the top of slab $1, \sigma_{b}=-\frac{\sigma}{2}$; at the bottom of slab $1, \sigma_{b}=\frac{\sigma}{2}$. At the top of slab $2, \sigma_{b}=-\frac{\sigma}{3}$; at the bottom of slab $2, \sigma_{b}=\frac{\sigma}{3}$.

II. Stress and momentum

$E_{x}=0, E_{y}=0$ and $E_{z}=-\frac{\sigma}{\epsilon_{0}} ; B_{x}=0, B_{y}=0$ and $B_{z}=0$. Elements of the stess tensor: $T_{i j}=\epsilon_{0}\left(E_{i} E_{j}-\frac{1}{2} \delta_{i j} E^{2}\right)+\frac{1}{\mu_{0}}\left(B_{i} B_{j}-\frac{1}{2} \delta_{i j} B^{2}\right)$, where i and j can be either x, y or z. Hence,

$$
T=\frac{\sigma^{2}}{2 \epsilon_{0}}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(ii) As $B=0, S=0$. Thus, integrating over the xy plane: $d \mathbf{a}=-d x d y \hat{\mathbf{z}}$ (negative because outward with respect to a surface enclosing the top plate). Thus, $F_{z}=\int T_{z z} d a_{z}=-\frac{\sigma^{2}}{2 \epsilon_{0}} A$. The force per unit area is $\mathbf{f}=\frac{\mathbf{F}}{A}=-\frac{\sigma^{2}}{2 \epsilon_{0}} \hat{\mathbf{z}}$.
(iii) $\frac{\sigma^{2}}{2 \epsilon_{0}}$ is the momentum per unit area, per unit time, crossing the xy plane.

III. Rectangular waveguide

Let a as the length of the longer side of the rectangular waveguide. For $\mathrm{TE}_{10}, E_{z}=0, B_{z}=B_{0} \cos \left(\frac{\pi x}{a}\right), E_{x}=0, B_{x}=\frac{-i k}{\left(\frac{\omega}{c}\right)^{2}-k^{2}} \frac{\pi}{a} B_{0} \sin \left(\frac{\pi x}{a}\right)$, $E_{y}=\frac{i \omega}{\left(\frac{\omega}{c}\right)^{2}-k^{2}} \frac{\pi}{a} B_{0} \sin \left(\frac{\pi x}{a}\right)$ and $B_{y}=0$.
(ii) From part (i) $\mathbf{E}=\left\{0, E_{y} \exp [i(k z-\omega t)], 0\right\}$ and. Also, we have found that $\mathbf{B}=\left\{B_{x} \exp [i(k z-\omega t)], 0, B_{z} \exp [i(k z-\omega t)]\right\}$. Thus, $\langle\mathbf{S}\rangle=\frac{1}{2 \mu_{0}}\left[\mathbf{E} \times \mathbf{B}^{\star}\right]=\hat{\mathbf{k}} \frac{\omega k \pi^{2} B_{0}^{2}}{2 \mu_{0}\left[\left(\frac{\omega}{c}\right)^{2}-k^{2}\right]^{2}}\left[\left(\frac{1}{a}\right)^{2} \sin ^{2}\left(\frac{\pi x}{a}\right)\right]$.
(iii)

For certain $\mathrm{TE}_{m n}$ mode, the group velocity is given by $v_{g}=c \sqrt{1-\left(\frac{\omega_{m n}}{\omega}\right)^{2}}$ and the cutoff frequency is found using $\omega_{m n}=c \pi \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}$. It is given that the length of the longer side $a=2.28 \mathrm{~cm}$, length of the shorter side is $b=1.01 \mathrm{~cm}$ and the driving frequency is $\omega=2 \times 10^{10} \mathrm{~Hz}$. The first three TE modes are $\mathrm{TE}_{10}, \mathrm{TE}_{01}$ and TE_{11}. The corresponding group velocities are $2.83 \times 10^{8} \mathrm{~m} / \mathrm{s}, 2.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and $1.75 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

IV. Bremsstrahlung Radiation

(i)

The angular distribution of the power radiated by a point charge is given by $\frac{d p}{d \Omega}=\frac{q^{2}}{16 \pi^{2} \epsilon_{0}} \frac{|\hat{\mathbf{r}} \times(\mathbf{u} \times \mathbf{a})|^{2}}{(\hat{\mathbf{r}} \cdot \mathbf{u})^{5}}$ where $u=\hat{\mathbf{r}} c-\mathbf{v}$ and $\hat{\mathbf{r}}$ is the vector from the point charge to the observer. If v and a is instantaneously collinear along the z direction, $\mathbf{u} \times \mathbf{a}=c(\hat{\mathbf{r}} \times \mathbf{a})$. Now, $|\hat{\mathbf{r}} \times(\mathbf{u} \times \mathbf{a})|^{2}=c \hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{a})=(\hat{\mathbf{r}} \cdot \mathbf{a}) \hat{\mathbf{r}}-\mathbf{a}$. Thus, $\mid \hat{\mathbf{r}} \times$ $\left.(\mathbf{u} \times \mathbf{a})\right|^{2}=a^{2}-(\hat{\mathbf{r}} \cdot \mathbf{a})^{2}=a^{2}\left(1-\sin ^{2} \theta\right)=a^{2} \cos ^{2} \theta$, where θ is the angle between the $\hat{\mathbf{r}}$ and \mathbf{a}. If we let $\beta=\frac{v}{c}$, we will find that $\frac{d p}{d \Omega}=\frac{\mu_{0} q^{2} a^{2}}{16 \pi^{2} c} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}$.
(ii) The total power $P=\int \frac{d p}{d \Omega} d \Omega=\frac{\mu_{0} q^{2} a^{2}}{16 \pi^{2} c} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}$. If we let $x=\cos \theta, P=\frac{\mu_{0} q^{2} a^{2}}{8 \pi c} \int_{-1}^{1} d x \frac{\left(1-x^{2}\right)}{(1-\beta x)^{5}}$. Using integration by parts, we will get $P=\frac{\mu_{0} q^{2} a^{2}}{6 \pi c} \gamma^{6}$, where $\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$.
(iii)

Done by: Jeysthur Ang

