NATIONAL UNIVERSITY OF SINGAPORE

PC3235 SOLID STATE PHYSICS I

(Semester I: AY 2014-15)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Write your student number only. Do not write your name.
- 2. This examination paper contains **FOUR** questions and comprises **THREE** printed pages.
- 3. Answer ANY THREE questions.
- 4. All questions carry equal marks.
- 5. Start each question on a new page.
- 6. This is a CLOSED BOOK assessment.
- 7. Programmable calculators are NOT allowed.
- 8. A book of constants is provided.
- 9. One Help Sheet (A4 size, both sides, handwritten) is allowed for this examination.

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF PHYSICS PC3235 – SOLID STATE PHYSICS I 2014/2015

Explain your working clearly. State all principles and assumptions used, and explain all symbols used.

1. (a)

Consider the uniform dilation $\delta = 3e_{xx} = 3e_{yy} = 3e_{zz}$ of a cubic crystal, where $e_{\alpha\beta}$ are the strain components. The elastic energy density is given by

$$U = \frac{1}{2}C_{11}(e_{xx}^2 + e_{yy}^2 + e_{zz}^2) + \frac{1}{2}C_{44}(e_{yz}^2 + e_{zx}^2 + e_{xy}^2) + C_{12}(e_{yy}e_{zz} + e_{zz}e_{xx} + e_{xx}e_{yy}),$$

where C_{11} , C_{12} and C_{44} are elastic stiffness constants.

- (i) If $U = B\delta^2/2$, express the bulk modulus B in terms of the elastic stiffness constants.
- (ii) The elastic stiffness constants of a certain cubic crystal are $C_{11} = 5.233 \times 10^{11} \text{ Pa}$, $C_{12} = 2.045 \times 10^{11} \text{ Pa}$ and $C_{44} = 1.607 \times 10^{11} \text{ Pa}$. Calculate its bulk modulus.

(b)

The scattering amplitude of x-rays diffracted by a crystal is given by

$$F = \int n(\mathbf{r}) \exp[i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}] dV,$$

where the integral is over the volume of the crystal, $n(\mathbf{r})$ is the electron number density, and \mathbf{k} and \mathbf{k}' are the respective incident and scattered wavevectors.

- (i) Express $n(\mathbf{r})$ as a Fourier series in the reciprocal lattice vectors \mathbf{G} . What is the justification for this?
- (ii) Hence, show that for diffraction to occur the scattering vector $\Delta \mathbf{k} (= \mathbf{k'} \mathbf{k})$ must equal \mathbf{G} .
- (iii) Hence, show that a necessary diffraction condition is $2\mathbf{k} \cdot \mathbf{G} = G^2$.

- 2. (a) Show that at low temperatures, in the Debye model, the heat capacity C of a d-dimensional dielectric crystal is proportional to T^d , where T is the temperature.
 - (b) At low temperatures, the measured heat capacity of crystalline potassium is given by $C = 2.08T + 2.57T^3$ (mJ·mol⁻¹·K⁻¹), where T is the temperature.
 - (i) Determine the Fermi energy (in eV).
 - (ii) Determine the Debye temperature.

3. (a)

- (i) State Mathiessen's law.
- (ii) A copper specimen containing 1% impurity atoms has a free mean path for collision with the impurity atoms of 55 nm. Determine the electrical resistivity of the specimen, given that at 300 K, pure copper has a resistivity of $1.7 \times 10^{-8} \,\Omega$ ·m, a free mean path of 40 nm, and the average thermal velocity is $1.2 \times 10^5 \,\mathrm{m\cdot s^{-1}}$.

(b)

The thermal conductivity of an insulator crystal, 3 mm in diameter, has a sharp maximum at 30 K. For the crystal, the Debye temperature $\theta = 1100$ K, and the acoustic velocity is 10^4 m·s⁻¹. If at low temperatures, the heat capacity per unit volume is $C_V = 0.1T^3$ J·m⁻³·K⁻¹, estimate

- (i) the maximum value of the thermal conductivity, and
- (ii) the thermal conductivity at 75 K.
- 4. (i) Show that the product of the concentration of electrons in the conduction band and the concentration of holes in the valence band in a semiconductor at temperature *T* can be expressed as

$$np = 4\left(\frac{k_B T}{2\pi\hbar^2}\right)^3 \left(m_e m_h\right)^{3/2} \exp\left(-\frac{E_g}{k_B T}\right),$$

where the symbols have the usual meaning. Note: $\int_0^\infty \exp(-z^2) dz = \sqrt{\pi}/2$

(ii) A semiconductor crystal contains 10^{21} donor atoms/m³. If the band gap is 1.15 eV at 450 K, and the effective electron and hole masses are each 0.5m (m = rest mass of the electron), use the law of mass action to determine the intrinsic concentration of electrons in the conduction band. State any assumptions made.