NATIONAL UNIVERSITY OF SINGAPORE

PC3235 - Solid State Physics I

(Semester I: AY 2017-18)

Time Allowed: 2 Hours

Instructions to candidates

- 1. Write your student ID on **both** this exam paper (below) **and** the answer books. **Do not write your name**.
- 2. This exam paper comprises six (6) printed pages (including this one).
- 3. Answer all the sixteen (16) questions for Part I directly on the test paper.
- 4. Answer all the three (3) problems in Part II only in the answer books. In this part, either show your calculations or justify adequately. Please start each problem in a new page.
- 5. At the end, you should submit both your exam paper and answer book.
- 6. This is a **closed book** examination with authorized materials. Students are allowed to use an A4-sized sheet (both sides) of self-manuscript notes.
- 7. You can use a non-programmable scientific calculator, but no other electronic devices.

Physical constants and units (SI)

 $1\,\mathrm{eV} \simeq 1.602 \times 10^{-19}\,\mathrm{Joule} \simeq 1.160 \times 10^4\,\mathrm{Kelvin}$

(This page was intentionally left blank. You can use it as scratch space.)

Part I (40 %, 2.5 % each)

(circle or write your answers directly here in the exam paper)

1. How many lattice points (or atoms) are contained in the FCC $\it convent$							ional unit cell?				
	A	one	В	two	С	three	D	four			
2.	2. If the inter-ionic distance in a NaCl crystal is 0.28 nm, the <i>primitive lattice parameter</i> is										
	A	0.14 nm	В	0.56 nm	С	0.07 nm	D	0.40 nm			
3.		What are the relations among the lattice constants a, b, c , as well as among the angles α, β, γ between the primitive directions in a <i>tetragonal</i> Bravais lattice?									
	A	$\begin{cases} a=b=c\\ \alpha=\beta=\gamma=90 \end{cases}$	В	$\begin{cases} a=b\neq c \\ \alpha=\beta=\gamma=90 \end{cases}$	С	$\begin{cases} a \neq b \neq c \\ \alpha = \beta = \gamma = 90 \end{cases}$	D	$\begin{cases} a \neq b \neq c \\ \alpha \neq \beta = \gamma = 90 \end{cases}$			
4.	If the volume of the primitive cell in a three-dimensional crystal structure is V_c , the volume of its primitive reciprocal cell is										
	A	$2\pi/V_c$	В	$(2\pi)^3 V_c$	С	$2\pi V_c$	D	$(2\pi)^3/V_c$			
5.	i. If q , μ and n represent the charge, mobility and concentration of carriers in a metal, its Drude conductivity is										
	A	$\sigma = n/\mu q$	В	$\sigma = \mu q/n$	С	$\sigma=nq/\mu$	D	$\sigma = \mu q n$			
6.		a Hall effect measurement where a transverse (Hall) field E_y develops under a longitudinal current density J_x and constant magnetic field B_z , the Hall constant is given by									
	A	$rac{E_y}{J_x B_z}$	В	$rac{J_x}{E_y B_z}$	С	$rac{B_z E_y}{J_x}$	D	$\frac{B_z J_x}{E_y}$			
7.	Near	room temperatures.	, the	Drude relaxation tir	ne ii	n a metal depends on	tem	perature as			
	A	$\tau \propto T$	В	$\tau \propto 1/T$	С	$\tau = {\rm constant}$	D	$\tau = 0$			
8.	At a given temperature, the electron density in silver is $5.86 \times 10^{23} \mathrm{cm}^{-3}$ and its resistivity is $1.51 \mu\Omega \cdot \mathrm{cm}$. What is the Drude relaxation time, in seconds?										
	You	response:									
9.		ne Debye temperatur uency, in rad/s?	e of	a crystal is $\Theta_D=4$	400 I	ζ , what is the corres	spon	ding Debye			
	You	r response:									

	A	$\propto T^3$	В	$\propto T$	С	$\propto e^{I/\Theta_D}$	D	$\propto e^{-1/\Theta D}$		
11.	If G represents any reciprocal lattice vector of a crystal whose periodic potential is weak, one expects the appearance of gaps in the electronic energy dispersion $every\ time$ the electron's wavevector k satisfies									
	A	$ k \ll G $	В	$m{k}\cdot m{G} = 0$	С	$ m{k} = m{k} \pm m{G} $	D	${m k}$ is parallel to ${m G}$		
12.	The	velocity of a Bloch	elect	ectron belonging to the energy band $\varepsilon_n(k)$ is defined as						
	A	$\hbar^{-1} \nabla_{k} \varepsilon_{n}(k)$	В	$\hbar oldsymbol{k}/m$	С	$\sqrt{2arepsilon_n(m{k})/m}$	D	$\hbard{m k}/dt$		
13.	In order for a crystalline solid to be an insulator, it is <i>necessary</i> that the number of electrons per unit cell be									
	A	zero	В	an odd number	С	an even number	D	less than 2		
14.	The density of electrons in the conduction band of an $intrinsic$ semiconductor with band gap E_g varies with temperature as									
	A	$\propto e^{E_g/2k_BT}$	В	$\propto e^{-E_g/2k_BT}$	С	$\propto E_g/k_BT$	D	$\propto (E_g/k_BT)^2$		
15.		n the context of a tight-binding description of the electronic band structure, if the lattice onstant is increased, one expects the width of the electronic energy bands to								
	A	decrease	В	remain the same	С	increase				
16.		In comparison with a partially filled band, the current carried by electrons in a completely filled band is								
	A	the same	В	larger	С	zero				

10. Very close to T=0, the specific heat of a metallic crystal varies with temperature as

Part II (60 %) (write your solutions only in the answer book)

Problem 1 20 % [3, 8, 5, 4]

An X-ray diffraction experiment using monochromatic light of wavelength $\lambda=0.154\,\mathrm{nm}$ was performed on the powder of a crystal whose exterior aspect reveals a *cubic* symmetry. The scattered intensity spectrum obtained as a function of *scattering* angle is plotted in the figure beside, and shows the lowest Bragg peaks recorded at

$$2\theta = \{38.5^{\circ}, 55.7^{\circ}, 69.7^{\circ}, 82.7^{\circ}\}.$$

This substance is known to be monoatomic.

- a) State (or calculate) the lattice structure factors of the body-centred (BCC) and face-centred (FCC) lattices when these are described in terms of conventional cubic unit cells.
- b) Determine whether this crystal has a BCC or a FCC lattice (show your work).
- c) Determine the lattice parameter, a, of its conventional cubic cell.
- d) Determine the volume of the 1st Brillouin zone associated with the crystal's <u>Bravais lattice</u> as a function of the parameter a. [hint: the crystal is not simple cubic, but you can obtain the result directly from the conventional cubic unit cell]

Consider the tight-binding description of a perfect one-dimensional, monoatomic crystal. It is known that only one band crosses the Fermi energy, ε_F , and that band arises from contributions of a *single* atomic orbital at each unit cell, $\phi(r)$.

a) Defining the matrix elements of the Hamiltonian of an electron in the periodic potential as (the hopping amplitudes illustrated in the figure)

$$E^{\rm at} - t_0 \equiv \langle \phi(0) | \hat{H} | \phi(0) \rangle, \qquad -t_1 \equiv \langle \phi(a) | \hat{H} | \phi(\pm a) \rangle, \qquad (t_1 > 0)$$

obtain the analytical expression for the electronic band dispersion, $\varepsilon(k)$, in the nearest-neighbour, orthogonal tight-binding approximation.

- b) Determine ε_F when the number of electrons in this band amounts to 1 per unit cell.
- c) For such value of ε_F , is this an electrical conductor or an insulator? Justify.

Problem 3 25 % [3, 4, 6, 8, 4]

Consider the description of free electrons in a piece of metal with volume V according to Sommerfeld's theory (in 3 dimensions).

- a) Derive the density of electronic states per spin (DOS), $g(\varepsilon)$, for free electrons.
- b) State how the volume density of electrons, n_e , is related to the DOS. Hence, or otherwise, obtain the Fermi energy, ε_F , as a function of n_e .
- c) If the electronic density is kept constant, derive how the chemical potential, μ , deviates from ε_F as a function of temperature, to lowest order in temperature. Express your result in terms of the DOS. [hint: use Sommerfeld's expansion; also, it's better to keep $g(\varepsilon)$ unspecified throughout your steps and final result]
- d) The thermal conductivity, κ , relates the heat flux that results from a temperature gradient through $J^q = -\kappa \nabla T$. It can be calculated within Drude-Sommerfeld theory from

$$\kappa = rac{2 au}{3Vm} rac{\partial}{\partial T} \sum_{m{k}} arepsilon_{m{k}}^2 f(arepsilon_{m{k}}),$$

where τ is the relaxation time (assumed to be k-independent), ε_k the free electron energy dispersion, m the electron's mass, and $f(\varepsilon)$ represents the Fermi-Dirac distribution. Show that, to lowest order in a Sommerfeld expansion, the above expression leads to

$$\kappa \simeq \frac{\pi^2 n_e \tau k_B^2 T}{3m}.$$

[hint: you will need the result of question c; also, do $\partial/\partial T$ only at the end]

e) Compute κ at $T=300\,\mathrm{K}$ for a metal whose Drude resistivity is $1.7\,\mu\Omega$ · cm at that temperature. Present the magnitude of your final result in SI units.

Note: recall that the lowest orders of the Sommerfeld expansion are

$$\int_{-\infty}^{+\infty} H(\varepsilon)f(\varepsilon) d\varepsilon = \int_{-\infty}^{\mu} H(\varepsilon) d\varepsilon + \frac{\pi^2}{6} (k_B T)^2 H'(\mu) + \frac{7\pi^4}{360} (k_B T)^4 H'''(\mu) + \mathcal{O}(T^6).$$

— end of exam paper (VMP)