NATIONAL UNIVERSITY OF SINGAPORE

PC3236 - COMPUTATIONAL METHODS IN PHYSICS

(Semester II: AY 2016-17)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your student number only. Do not write your name.
- 2. This examination paper contains FOUR questions and comprises FOUR printed pages.
- 3. Answer ALL questions.
- 4. All questions carry equal marks.
- 5. Answers to the questions are to be written in the answer books.
- 6. Show all working steps clearly and box each answer.
- 7. Please start each question on a new page.
- 8. This is a CLOSED BOOK examination.
- 9. Programmable or graphic calculators are **NOT** allowed to be used in this examination.
- 10. The last page contains a list of formulae.

1. (a) Use the secant method to determine the root of

$$-x^3 + 5x^2 - 2 = 0$$

that lies in the interval (4, 6). Express your answer accurate to at least three decimal places.

(b) i. Find the Padé approximation $R_{1,1}(x)$ for $f(x) = \tan(\sqrt{x})/\sqrt{x}$. You may use the Maclaurin expansion

$$f(x) = 1 + \frac{x}{3} + \frac{2x^2}{15} + \cdots$$

ii. Hence show that

$$\tan(x) \approx R_{3,2}(x) = \frac{15x - x^3}{15 - 6x^2}$$

2. (a) Use the following data to approximate $\int_1^5 f(x) dx$ as accurately as possible.

x	1	2	3	4	5
f(x)	2.4142	2.6734	2.8974	3.0976	3.2804

(b) Consider the following differential equation

$$\frac{dy}{dt} = 1 + (t - y)^2$$
, with $y(2) = 1$

Use a third-order Taylor series method (with a local truncation error of $\mathcal{O}(\tau^4)$) to approximate the solution for the first two time steps. Use a time step τ of 0.5.

3. Solve the following boundary-value problem

$$\frac{d^2y}{dx^2} + y^2 = 2x^2$$
, $y(0) = 0$, $y'(2) = 1$

with the finite difference method. Discretize the spatial domain using a step size of $\frac{2}{3}$. Ensure that your answers have converged to at least 1 decimal place.

4. Solve the heat equation

$$\frac{\partial u}{\partial t} - \frac{1}{16} \frac{\partial^2 u}{\partial x^2} = 0, \quad 0 < x < 1$$

subject to the initial and boundary conditions

$$u(x, 0) = 2\sin(2\pi x),$$

 $u(0, t) = 0,$
 $u(1, t) = 0$

Integrate for one time step using the Crank-Nicolson method with a spatial step size of 0.2 and a time step of 0.1. Give your answers rounded off to four decimal places.

LHS

Formulae Sheet

Taylor series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2!}f''(a) + \dots + \frac{(x-a)^{n-1}}{(n-1)!}f^{[n-1]}(a) + \frac{(x-a)^n}{n!}f^{[n]}(\xi)$$

Inverse quadratic interpolation:

$$x(f) = \frac{(f - f_2)(f - f_3)}{(f_1 - f_2)(f_1 - f_3)}x_1 + \frac{(f - f_1)(f - f_3)}{(f_2 - f_1)(f_2 - f_3)}x_2 + \frac{(f - f_1)(f - f_2)}{(f_3 - f_1)(f_3 - f_2)}x_3$$

Secant method:
$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

Newton's method for system of equations: $J(x)\Delta x = -f(x)$, J is the Jacobian matrix

Central difference:
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
, $f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$

Richardson extrapolation:
$$F = \frac{(h_1/h_2)^p D(h_2) - D(h_1)}{(h_1/h_2)^p - 1}$$

Padé:
$$R_{n,m}(x) = \frac{\sum_{i=0}^{n} p_i x^i}{1 + \sum_{j=1}^{m} q_j x^j}$$
, $\sum_{i=0}^{k} a_i q_{k-i} = p_k$, $k = 0, 1, ..., N$ and $N = n + m$

Lagrange:
$$p(x) = \sum_{j=1}^{n} l_{j,n}(x) f(x_j), \ l_{j,n}(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_1)(x_j - x_2) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

Simpson's 1/3 rule:
$$\int_{a}^{b} f(x) dx = \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{h}{3}$$

Monte Carlo:
$$\int_a^b f(x) dx \approx (b-a)(\langle f \rangle_N \pm \sigma_N), \quad \sigma_N = \sqrt{\frac{\frac{1}{N} \sum_i f(x_i)^2 - \left(\frac{1}{N} \sum_i f(x_i)\right)^2}{N-1}}$$

Modified Euler:
$$y(x_0 + h) = y(x_0) + hf(x_{\text{mid}}, y_{\text{mid}})$$

Heun's method:
$$y(x_0 + h) = y(x_0) + h \frac{f_0 + f(x_0 + h, y_0 + hf_0)}{2}$$

Crank-Nicolson method:
$$y(x_0 + h) = y(x_0) + \frac{h}{2}(f_0 + f_1)$$

Leibniz Integral Rule:
$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(x, y) dy = \int_{a(x)}^{\overline{b(x)}} \frac{\partial f}{\partial x} dy + f(x, b(x)) \frac{db}{dx} - f(x, a(x)) \frac{da}{dx}$$

Gauss-Legendre quadrature:

$$\int_{-1}^{1} f(\xi) d\xi \approx \sum_{i=1}^{n} W_{i} f(\xi_{i}), \qquad \frac{\pm \xi_{i}}{n=2} \qquad \frac{W_{i}}{n=3}$$

$$\frac{1}{\sqrt{3}} \qquad 1 \qquad 0 \qquad \frac{8}{9}$$

$$\sqrt{\frac{3}{5}} \qquad \frac{5}{9}$$