Question 1 (a)

$$\int_0^2 \frac{\sinh x}{x} dx$$

We use the formula $T_{a,b} = \frac{4^{b-1}T_{a,b-1} - T_{a-1,b-1}}{4^{b-1} - 1}$ to construct the triangle below:

h	T _{a,b}			
h	<i>T</i> ₁₁			
$\frac{h}{2}$	<i>T</i> ₂₁	<i>T</i> ₂₂		
$\frac{h}{4}$	<i>T</i> ₃₁	<i>T</i> ₃₂	<i>T</i> ₃₃	

Here T_{aa} is the integral calculated using the Composite Trapezoidal Rule,

$$T_{11} = \frac{h}{2}[f(2) - f(0)], \qquad T_{22} = \frac{h}{4}[f(2) + 2f(1) + f(0)], \quad \text{etc.}$$

So after a lengthy calculation, we get

h	$T_{a,b}$				
2	2.81343				
1	2.58192	2.50475			
0.5	2.52182	2.51781	2.51868		
0.25	2.50664	2.50640	2.50622	2.50602	
0.125	2.50284	2.50283	2.50282	2.50281	2.50280

Our final answer obtained is 2.5028 (exact answer: 2.5016).

Tips: It is best to further attempt one more line to get a more accurate answer, but the calculations will involve at least 17 terms!

Question 1 (b) $f(x) = 3x^3 - 10x^2 + 5x + 5$ The root is at (2,3).

 $x_1 = 2$, $x_2 = 3$, $x_3 = 2.5$, $f_1 = -1$, $f_2 = 11$, $f_3 = \frac{15}{8}$

$$\begin{aligned} x_{(0)} &= -\frac{f_2 f_3 x_1 (f_2 - f_3) + f_3 f_1 x_2 (f_3 - f_1) + f_1 f_2 x_3 (f_1 - f_2)}{(f_1 - f_2) (f_2 - f_3) (f_3 - f_1)} \\ &= -\frac{\frac{12045}{32} - \frac{1035}{64} + \frac{225}{4}}{-\frac{5037}{16}} \\ &= 2.192525 \end{aligned}$$

Inside bracket, so

 $x_1 = 2,$ $x_2 = 2.5,$ $x_3 = 2.192525$ $f_1 = -1,$ $f_2 = \frac{15}{8},$ $f_3 = -0.489538$ $x_{(1)} = 2.335080$

Repeating the process, we get $x_{(2)} = 2.280523$ $x_{(3)} = 2.284426$ $x_{(4)} = 2.284324$ $x_{(5)} = 2.284324$ $\therefore x = 2.28432$ (5 *d*. *p*.)

Tips: To speed up the process, we can also alternate between polynomial interpolation and bisection. Although the question specifies a specific interpolation, the bisection method is allowed to be used in between.

Question 1 (c)

x	у					
1	-2					
-1	-14	6				
3	18	10	1			
2	1	3	-1	2		
4	61	21	3	2	0	
-2	-47	15	-9	2	0	0

$$y = -2 + 6(x + 1) + (x^{2} - 1) + 2(x^{2} - 1)(x - 3) = -3 + 4x - 5x^{2} + 2x^{3}$$

Question 2 (a)

$$\sqrt{x+1}\frac{dy}{dx} + e^{-x}y^3 = 0$$
$$\frac{dy}{dx} = -\frac{e^{-x}y^3}{\sqrt{x+1}}$$

We use Heun's method, $y_1 = y_0 + \frac{h}{2}(f_0 + f_1)$ where $f_0 = f(x_0, y_0)$, $f_1 = f(x_0 + h, y_0 + hf_0)$. So we get $y_1 = y_0 + \frac{h}{2} \left[\frac{e^{-x_0} y_0^3}{\sqrt{x_0 + 1}} + \frac{e^{-x_0 + h}(y_0 + hf_0)^3}{\sqrt{x_0 + h + 1}} \right]$

Plug $x_0 = 0$, $y_0 = 2$ into the equation, we get $y_1 = 1.52546$, $x_1 = 0.1$. Repeating the process, we will get

 $\begin{array}{ll} x_2 = 0.2, & y_2 = 1.30461 \\ x_3 = 0.3, & y_3 = 1.17367 \\ x_4 = 0.4, & y_4 = 1.08658 \\ x_5 = 0.5, & y_5 = 1.02443 \\ x_6 = 0.6, & y_6 = 0.97794 \\ x_7 = 0.7, & y_7 = 0.94197 \\ x_8 = 0.8, & y_8 = 0.913425 \\ x_9 = 0.9, & y_9 = 0.89034 \\ x_{10} = 1.0, & y_{10} = 0.87138 \end{array}$

Question 2 (b)

x	1	1.5	1.8	2.4
f(x)	6	6.875	7.952	12.104

We first do an interpolation (your choice of method), then the Gaussian quadrature to evaluate the integral.

$$x = \frac{b+a}{2} + \frac{b-a}{2}\xi = 1.7 + 0.5\xi$$

$$\xi = \pm \frac{1}{\sqrt{3}}, \qquad w = 1$$

$$\int_{1.2}^{2.2} f(x) \, dx = \frac{1}{2} \left[f\left(1.7 - \frac{1}{2\sqrt{3}} \right) + f\left(1.7 + \frac{1}{2\sqrt{3}} \right) \right] = \frac{1}{2} \left[f(1.41132) + f(1.98868) \right] = 7.79134$$

Tips: you can also use Newton's interpolating polynomial, which yields the integral

$$\int_{1.2}^{2.2} x^3 - 2x^2 + 2x + 5 \, dx.$$

Question 3 (a)

$$h = 0.1, \quad \tau = 0.1$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$$

$$\frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{h^2} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\tau^2}$$

$$u_j^{n+1} = u_{j+1}^n + u_{j-1}^n - u_j^{n-1}, \quad (1)$$

We want to find u(x, 0.2), $u_j^2 = u_{j+1}^1 + u_{j-1}^1 - u_j^0$. Since the ends are fixed, we have $u_0^2 = u_0^1 = 0$, $u_{10}^2 = u_{10}^1 = 0$. The information given were $u_0^0 = 0$, $u_j^0 = e^{-100(x_j - 0.5)^2}$, $u_{10}^0 = 0$. It is initially not moving, so $\frac{\partial u_j^0}{\partial t} = \frac{u_j^1 - u_j^{-1}}{2\tau} = 0 \implies u_j^{-1} = u_j^1$. Now using equation (1) and the information obtained, we get $u_j^1 = u_{j+1}^0 + u_{j-1}^{-1} - u_j^{-1} \implies u_j^1 = \frac{u_{j+1}^0 + u_{j-1}^0}{2}$

Use this new information to find a relationship between u^2 and u^0 :

$$u_j^2 = u_{j+1}^1 + u_{j-1}^1 - u_j^0 = \frac{u_{j+2}^0 + u_{j-2}^0}{2}$$
$$u_0^2 = 0, \qquad u_1^2 = \frac{u_3^0 + u_{-1}^0}{2} = 0.00916$$

Continue calculating, we get

 $u_{2}^{2} = 0.18394$ $u_{3}^{2} = 0.50000$ $u_{4}^{2} = 0.18400$ $u_{5}^{2} = 0.01832$ $u_{6}^{2} = 0.18400$ $u_{7}^{2} = 0.50000$ $u_{8}^{2} = 0.18394$ $u_{9}^{2} = 0.00916$ $u_{10}^{2} = 0$

Question 3 (b) $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$ $\frac{u_j^{n+1} - u_j^n}{\tau} = \alpha \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{h^2}$ $u_j^{n+1} = u_j^n + \frac{\alpha \tau}{h^2} (u_{j+1}^n - 2u_j^n + u_{j-1}^n)$ We let $u_j^{n+1} = \xi u_j^n, \quad x_j = jh, \quad u_j^n = A^n e^{hijk}$ $A^{2n+1} e^{hijk} = A^n e^{hijk} + \frac{\alpha \tau}{h^2} (A^n e^{hi(j+1)k} - 2A^n e^{hijk} + A^n e^{hi(j-1)k})$ $\xi = 1 + \frac{\tau \alpha}{h^2} (e^{ikh} + e^{-ikh} - 2) = 1 - \frac{4\tau \alpha}{h^2} \sin^2 \frac{kh}{2}$ $|\xi| \le 1$ $|1 - \frac{4\tau \alpha}{h^2}| \le 1$ $0 \le \frac{4\tau \alpha}{h^2} \le 2$ \therefore For it to be stable, $\frac{\tau \alpha}{h^2} = \frac{1}{2}$.

Question 4

$$(x-2)\frac{d^2y}{dx^2} - 6\sin x^2\frac{dy}{dx} + y(1-x^2)\cos x = 0$$
$$y'' = \frac{6\sin x^2}{x-2}y' - \frac{(1-x^2)\cos x}{x-2}y$$

We let $y_1 = y$, $y_2 = y'$, we have

$$\binom{y_1}{y_2}' = \begin{pmatrix} y_2 \\ \frac{6\sin x^2}{x-2}y_2 - \frac{(1-x^2)\cos x}{x-2}y_1 \end{pmatrix}, \quad y_{2,0} = -5, \quad y_{2,10} = 2$$

Using the simple Euler Method,

$$y_{1,n+1} = y_{1,n} + \frac{1}{10}y_{2,n}$$

$$y_{2,n+1} = y_{2,n} + \frac{1}{10}\frac{6\sin x_n^2}{x_n - 2}y_2 - \frac{(1 - x_n^2)\cos x_n}{x_n - 2}y_1$$

Using a trial value of $y_{1,0} = 1$,

 $y_{1,0} = 1, \qquad y_{2,0} = -5$ $y_{1,1} = 0.5, \qquad y_{2,1} = -4.95$ $y_{1,2} = 0.005, \qquad y_{2,2} = -4.90845$ $y_{1,3} = -0.48585, \qquad y_{2,3} = -4.84276$ $y_{1,4} = -0.97013, \qquad y_{2,4} = -4.71398$ $y_{1,5} = -1.44153, \qquad y_{2,5} = -4.47926$ $y_{1,6} = -1.88946, \qquad y_{2,6} = -4.09924$ $y_{1,7} = -2.29938, \qquad y_{2,7} = -3.55165$ $y_{1,8} = -2.65455, \qquad y_{2,8} = -2.84918$ $y_{1,9} = -2.93947, \qquad y_{2,9} = -2.05390$ $y_{1,10} = -3.14486, \qquad y_{2,10} = -1.27404$ The residue function, r(1) = -1.27404 - 2 = -3.27404

Now using a different trial value $y_{1,0} = 2$, and repeating the calculations, we get $y_{1,10} = -1.97561$, $y_{2,10} = -1.14655$ The residue function, r(2) = -1.14655 - 2 = -3.14655

Since the residue function is linear, we have

 $r(y_{1,0}) = \frac{-3.14655 + 3.27404}{2 - 1} (y_{1,0} - 1) - 3.27404 = 0.12749 y_{1,0} - 3.40153$ $\therefore r = 0, y_{1,0} = 26.68076$

Using this new value of $y_{1,0}$, we get

$y_{1,0} = 26.68076$,	$y_{2,0} = -5$
$y_{1,1} = 26.18076$,	$y_{2,1} = -3.66596$
$y_{1,2} = 25.81416$,	$y_{2,2} = -2.29705$
$y_{1,3} = 25.58446$,	$y_{2,3} = -0.91711$
$y_{1,4} = 25.49275$,	$y_{2,4} = 0.42033$
$y_{1,5} = 25.53478$,	$y_{2,5} = 1.62794$
$y_{1,6} = 25.69758$,	$y_{2,6} = 2.58728$
$y_{1,7} = 25.95631$,	$y_{2,7} = 3.16623$
$y_{1,8} = 26.27293$,	$y_{2,8} = 3.25731$
$y_{1,9} = 26.59866$,	$y_{2,9} = 2.83382$
$y_{1,10} = 26.88204,$	$y_{2,10} = 1.99986$

Tips: The simple Euler method does not produce accurate results. The results calculated using the 4th order Runge-Kutta method yields r(1) = -1.21141 - 2 = -3.21141r(2) = -1.10362 - 2 = -3.10362

 $y_{1,0} = 30.79380$

Solutions provided by: **A/Prof Paul Lim** (Questions 1b – 2, 3b) John Soo (Questions 1a, 3a, 4)