NATIONAL UNIVERSITY OF SINGAPORE

PC3236 - COMPUTATIONAL METHODS IN PHYSICS

(Semester II: AY 2008-09)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FOUR questions and comprises THREE printed pages.
- 2. Answer any THREE questions.
- 3. All questions carry equal marks.
- 4. Answers to the questions are to be written in the answer books.
- 5. This is a CLOSED BOOK examination.
- 6. Programmable calculator is NOT allowed to be used in the examination.
- 7. A Table of Constants is provided.

1. (a) Evaluate

$$\int_0^2 \frac{\sinh x}{x} \, \mathrm{d}x$$

with Romberg integration. Express your answer accurate to four decimal places.

(b) Use Brent's method to determine the root of

$$f(x) = 3x^3 - 10x^2 + 5x + 5$$

that lies in the interval (2,3). Express your answer accurate to four decimal places.

(c) The data points

x	1	-1	3	2	4	-2
у	-2	-14	18	1	61	-47

lie on a polynomial. Determine this polynomial.

2. (a) Use Heun's method (or the improved Euler method) to solve the non-linear differential equation

$$\sqrt{x+1}\,\frac{\mathrm{d}y}{\mathrm{d}x} + e^{-x}y^3 = 0,$$

subject to the initial condition y(0) = 2. Use a step size of 0.1 to integrate the differential equation from x = 0 to x = 1.

(b) Evaluate numerically $\int_{1.2}^{2.2} f(x) dx$, where f(x) is represented by the unevenly spaced data

x	1.0	1.5	1.8	2.4
f(x)	6.000	6.875	7.952	12.104

You may find the following information on Gauss-Legendre quadrature useful.

$$\int_{-1}^{1} f(\xi) \, \mathrm{d}\xi \approx \sum_{i=1}^{n} W_{i} f(\xi_{i}),$$

where the weights W_i and abscissas ξ_i are given in the following table.

$\pm \xi_i$		W_i	$\pm \xi_i$		W_i
	n=2			n=5	
0.577350		1.000000	0.000000		0.568889
	n = 3		0.538469		0.478629
0.000000		0.888889	0.906180		0.236927
0.774597		0.555556		n = 6	
	n = 4		0.238619		0.467914
0.339981		0.652145	0.661209		0.360762
0.861136		0.347855	0.932470		0.171324

 (a) Use the finite difference method to solve the wave equation of a vibrating string

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2},$$

for $0 \le x \le 1$. Assume that the string is initially deformed so that at t = 0, we have

$$u(x,0) = \begin{cases} 0, & x = 0, \\ e^{-100(x-0.5)^2}, & 0 < x < 1, \\ 0, & x = 1 \end{cases}$$

and the string is also motionless initially. Both ends of the string are held fixed at all time. Using a grid spacing of 0.1 m, 11 spatial grid points and a time step of 0.1 s, calculate the displacement amplitude of the wave motion at t = 0.2 s, i.e. u(x, 0.2).

(b) Use a forward-time centered-space approximation to find the difference equation for the 1-D diffusion equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}.$$

By applying the von Neumann stability analysis, derive the stability criterion relating the time step, grid spacing and α .

4. Apply the shooting method to solve

$$(x-2)\frac{d^2y}{dx^2} - 6\sin(x^2)\frac{dy}{dx} + (1-x^2)\cos(x)y = 0$$

subject to the boundary conditions, y'(0) = -5, and y'(1) = 2. Use the simple Euler method with a step size of 0.1 to find an approximate solution to this boundary-value problem.

LHS