PC3236 Computational Methods in Physics

The answers for certain questions in this document are incomplete. Would you like to help us complete them? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks!

Question 1 (a)

Question 1 (b)

$f_{1}=\tan x-\cos y-1$
$f_{2}=\cos x+3 \sin y$
$f=\binom{f_{1}}{f_{2}}$
$J=\left(\begin{array}{ll}\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\sec ^{2} x & \sin y \\ -\sin x & 3 \cos y\end{array}\right)$
$\Delta x=-J^{-1} f=-\frac{1}{3 \sec ^{2} x \cos y+\sin x \sin y}\left(\begin{array}{cc}3 \cos y & -\sin y \\ \sin x & \sec ^{2} x\end{array}\right)\binom{\tan x-\cos y-1}{\cos x+3 \sin y}$
$\binom{x}{y}_{0}=\binom{3}{3}$
$\binom{x}{y}_{1}=\binom{x}{y}_{0}+\left.\Delta x\right|_{3,3}=\binom{3.17707}{2.8008}$
$\binom{x}{y}_{2}=\binom{3.19858}{2.80225}$

Question 2

Question 3

$\frac{d^{2} y}{d x^{2}}+2000 x^{3} y=0$,
$y(0)=0, \quad y(0.3)=1, \quad h=0.1$
$y_{1}=y_{0}+h f\left(x_{\text {mid }}, y_{m i d}\right)$

Writing the equation in vector form,
$\binom{y_{1}}{y_{2}}^{\prime}=\binom{y_{2}}{-2000 x^{3} y_{1}}$
$\binom{y_{1}}{y_{2}}_{\text {mid }}=\binom{y_{1}}{y_{2}}_{0}+\frac{h}{2}\binom{y_{2}}{-2000 x^{3} y_{1}}_{0}$
$\binom{y_{1}}{y_{2}}_{1}=\binom{y_{1}}{y_{2}}_{0}+h\binom{y_{2, \text { mid }}}{-2000 x^{3} y_{1, \text { mid }}}=\binom{y_{1}}{y_{2}}_{0}+h\binom{y_{2,0}-1000 h x^{3} y_{1,0}}{-2000\left(x_{0}+\frac{h}{2}\right)^{3}\left(y_{1,0}+\frac{h}{2} y_{2,0}\right)}$
Using the initial values, $\binom{y_{1}}{y_{2}}_{0}=\binom{0}{1}$, we get
$x_{1}=0.1, \quad\binom{y_{1}}{y_{2}}_{1}=\binom{0.1}{0.99875}$
$x_{2}=0.2, \quad\binom{y_{1}}{y_{2}}_{2}=\binom{0.198875}{0.897542}$
$x_{3}=0.3, \quad\binom{y_{1}}{y_{2}}_{3}=\binom{0.2727192}{0.1358166}$
The residue function obtained,
$r=\left.y_{1}\right|_{x=0.3}-1=-0.7272808$
Now we choose another initial value, $\binom{y_{1}}{y_{2}}_{0}=\binom{0}{2}$, then we get $\binom{y_{1}}{y_{2}}_{3}=\binom{0.545438}{0.27163368}$ and $r=-0.454562$.
Since the residue function is a straight line, we can use some interpolation (e.g.Lagrange) to find the value of u, which is $u=3.66678$. Finally we verify the answer:
$x_{0}=0, \quad\binom{y_{1}}{y_{2}}_{0}=\binom{0}{3.66678}$
$x_{1}=0.1, \quad\binom{y_{1}}{y_{2}}_{1}=\binom{0.366678}{3.6621965}$
$x_{2}=0.2, \quad\binom{y_{1}}{y_{2}}_{2}=\binom{0.72923087}{3.29109}$
$x_{3}=0.3, \quad\binom{y_{1}}{y_{2}}_{3}=\binom{1}{0.49801}$

Question 4

PC3236 Computational Methods in Physics

$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
The value of u at one point is the average between the 4 adjacent points. So listing $u_{x, y}$ from the bottom to the top,
$u_{0,0}=u_{\frac{1}{3}, 0}=u_{\frac{2}{3}, 0}=u_{1,0}=0$
$u_{0, \frac{1}{3}}=0$
$u_{\frac{1}{3} \cdot \frac{1}{3}}=\frac{1}{4}\left(u_{\frac{1}{3}, 0}+u_{0, \frac{1}{3}}+u_{\frac{2}{3} \cdot \frac{1}{3}}+u_{\frac{1}{3} \cdot \frac{2}{3}}\right)=\frac{1}{4}\left(u_{\frac{2}{3}, \frac{1}{3}}+\frac{2}{3}\right)$,
$u_{\frac{2}{3} \cdot \frac{1}{3}}=\frac{1}{4}\left(u_{\frac{1}{3} \frac{1}{3}}+u_{1, \frac{1}{3}}+\frac{4}{3}\right)$,
$u_{1, \frac{1}{3}}=\frac{1}{4}\left(u_{\frac{2}{3}, \frac{1}{3}}+u_{\frac{4}{3}, \frac{1}{3}}+2\right)$,
$u_{0, \frac{2}{3}}=0$
$u_{\frac{1}{3} \cdot \frac{2}{3}}=\frac{2}{3}$
$u_{\frac{2}{3} \cdot \frac{2}{3}}=\frac{4}{3}$
$u_{1, \frac{2}{3}}=2$

From the condition $\frac{\partial u_{1, y}}{\partial x}=3 y$, we get
$\frac{1}{2\left(\frac{1}{3}\right)}\left(u_{\frac{4}{3} \cdot \frac{1}{3}}-u_{\frac{2}{3} \cdot \frac{1}{3}}\right)=1$,
Solving (1) to (4), we get
$u_{\frac{1}{3} \cdot \frac{1}{3}}=\frac{1}{3}, \quad u_{\frac{2}{3} \cdot \frac{1}{3}}=\frac{2}{3}, \quad u_{1, \frac{1}{3}}=1$.

Solutions Provided by:

A/Prof Paul Lim (Questions 1b, 3-4)

© 2013, NUS Physics Society

