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1. The Joukowsky airfoil is obtained from the circle |2’| = a in the z’-plane
via the following two transformations

¢ = Z+¢
b2

z = + —.
“te

The first transformation yields a circle in the (-plane centred at the
point ¢ = ¢ (usually written in polar form, ¢ = me*® with m < a and
7/2 < 6 < 7). Let the shifted circle [¢ — c| = a intersect the positive
real axis at ( = b. The value b then becomes the key parameter in the
second transformation. An example of the transformations leading to
an airfoil shape is shown in the figure below:

Joukowski airfoil obtained with a=1, m=0.15, 5=110°
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(a) Explain how the transformations create a sharp point at the trail-
ing end of the airfoil shape (z = 2b).

(b) A flow with circulation —I" around the original circle in the z'-
plane is given by the complex velocity potential:
2

wo(Z) = Uz'—l—UZ—I — %lnz'.

The corresponding flow (with complex velocity potential w(z))
around the airfoil shape is obtained via the transformations:

w(z) = wo{z’[g(z)]}.
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Show that a physically acceptable solution for the flow around
the airfoil shape is obtained only when the circulation takes on a
specific value equal to

r

— =Ua(e™ —e") or I =4naUsinv,
2me
where v is defined by

ae™ = b — me®.

(c) Show that the flow velocity of the physically acceptable solution

is given by
Ul¢—c)(b—c) —a’] (?
(€= (C+b)(b—c) ’

and at the trailing end of the airfoil shape (z = 2b or ( = b), the
velocity components are

U — 1 =

U .
U = — COS 7y COS 27, v = —— €08 ysin 2.
a a

2. The figure below is a log-log plot of the Drag Coefficient Cp versus the
Reynolds Number Re for viscous flows around a sphere.
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(a) Perform a dimensional analysis to derive the following expression
for the drag D experienced by a sphere immersed in a steady flow

of a viscous fluid:
D pal
prroyr ikl Bl
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where ®(z) is a general function of the argument x. We may
assume that the relevant physical parameters are: the density p
and the viscosity p of the fluid, the flow speed U far upstream of
the sphere, and the radius a of the sphere.

(b) The Stokes formula gives the drag on a sphere as D = 6rpual.
Show that the Stokes formula is a special case of the above general
expression for the drag D.

(c) What should be the gradient of the log-log plot of Cp versus Re
when the Stokes formula is valid? From the log-log plot above,
state the range of values of the Reynolds Number Re where the
Stokes formula is applicable.

(d) State the range of values of the Reynolds Number Re where the
drag is approximately proportional to U?.

(e) A sharp decrease in the Drag Coefficient is observed at Reynolds
Number around 3x10°. Briefly describe the physical phenomena
that cause the sharp drop in drag.

3. The dispersion relation of deep water waves is given by
T
w? = gk + —k3
P

where g is the gravitational acceleration, T the surface tension of water,
and p the density of water.

(a) Show that the phase velocity of deep water waves has a minimum
value of about 0.23ms™* at wavelength of about 1.7cm. (Values
of constants: g =9.8ms™2, T =0.074 Nm™, p=1,000kgm=3.)

(b) Show that for short wavelengths, k > ,/gp/T', we have capillary
waves where the gravitational effect may be neglected. What are
the phase velocity and group velocity of the capillary waves?

(c) For long wavelengths, k < /gp/T', we have gravity waves. What
are the phase velocity and group velocity of gravity waves?
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(d) Figures (A) and (B) below show the wavetrains that evolve from
the initial disturbance on the left while they propagate to the
right. Note that despite being shown side by side, the wavetrains
are of very different length scales. State with explanation which
wavetrain is gravity wave in nature and which is capillary wave in
nature.
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(e) A steady stream of speed U is disturbed by a stationary obstacle.
Is there a minimum flow speed U for steady waves to be excited
by the obstacle? If steady waves are excited, are the capillary
waves found upstream or downstream? Why? Are the gravity
waves found upstream or downstream? Why? If the flow speed U
increases, how will it affect the wavelengths of the capillary waves
and the gravity waves?

(f) If the length of the yacht in the figure below is 10m, estimate the
speed at which it is sailing:

(a) Consider the flow of an incompressible fluid governed by the Navier-
Stokes equations:
ou

1 2
&—-i—(u-V)u——;V}H-VVu, V.u=0.
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Derive the following equation for the local rate of change of the
kinetic energy density:

o /1, 1, p B 9
§<2u>+v [(2“ —l-,;)u-i—r/wxu]; rw

where w =V x u.

Briefly discuss the implications of the above equation on the vis-
cous dissipation of kinetic energy of fluid flows.

Write a brief note on Kolmogorov’s 1941 theory for fully devel-
oped, isotropic turbulence. State the basic assumptions and show
how they lead to the following conclusions:

e The length scale  and the velocity scale v of the smallest
eddies are related to the generation length scale £ and velocity

scale u as
n ~ Re™3/¢, v~ Re Y.

e The inertial subrange energy spectrum E(k) is expected to
depend on the [—5/3]-power of the wavenumber k:

E(k/’) ~ 62/3]{3_5/3,

where € is the rate of energy cascade.

The following equations might be useful:

u-Vy =V(pu) — ¢V - u;

u-Vuz(qu)xu—i—V%u?;
Viuxw)=(Vxu)-w—(Vxw)- u;
V x(Vxu)=V(V-u)-Vu

— End of Paper —



