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1. EITHER

(a)

For an incompressible, non-viscous fluid of constant and homoge-
neous density py, the equations governing the flows (with vertically
upward z-axis) are

av P
N oy = (L) - v,

V-v = 0.

Show that the momentum equation may be written as

-a—Y+V( v +£+gz):vxw,
ot p

where w = V X v is the vorticity of the flow field.

Derive the following versions of Bernoulli’s equation, with clear
statements of the conditions for each of them to be valid:

1
v 4 L 4+ gz = constant,
£o

2
v V(v+—+gz) = 0,
(%) B
at (V(/)) +;)E+gz = 0

where ¢ is velocity potential which gives v = V¢.

When the viscous effect cannot be neglected, the momentum equa-
tion becomes

ov B P\ 9
Fn +(v-V)v=-V (E) V(gz) + vV*v.

Show that for a steaty-state, irrotational flow of this incompress-
ible fluid, the following equation is still valid

1
v+ P + gz = constant.
2 Po

Does the symbol p in the equations in Part (c) represent an isotropic
pressure in the fluid? If not, what does it represent?

. i ‘) ]
Hint: Oij = —p&:j +u (g:; + SB%)




OR

(a)

(b)

Water at atmospheric pressure is rushing into a vacuum through
an exit. Estimate the flow speed at the exit. (Density of water =
1,000 kg m™~3, atmospheric pressure = 101,325 Pa.)

What will be the flow speed if it is air instead of water? The air
flow may be assumed to be adiabatic. (Density of air = 1.2kgm™3,
v = ¢p/cy = 1.4; atmospheric pressure = 101,325 Pa.)

The figure below shows a vessel filled with water. Water is dis-
charging from the vessel through a Borda mouthpiece (a circular
orifice with a cylindrical tube projecting inward) at a depth A be-
low the water surface in the vessel. The cross-sectional area of the
Borda mouthpiece is Ag. Determine the discharge rate of water
from the vessel. Pleasc take care to explain the basic principles
involved in the determination of the discharge rate.
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2. The Joukowsky airfoil is obtained from the circle |2/| = a in the 2’-plane
via the following two transformations
b2
¢ = Z +e, and z=§+?.

The first transformation yields a circle in the (-plane centred at the
point ¢ = ¢ (usually written in polar form, ¢ = me® with m < ¢ and
/2 < § < 7). Let the shifted circle | — ¢| = a intersect the positive
real axis at ¢ = b. The value b then becomes the key parameter in the
second transformation. An example of the transformations leading to
an airfoil shape is shown in the figure below:

Joukewski ajrfoll obtained with a=1, m=0.15 §=110°
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(a) Explain how the transformations create a sharp point at the trail-
ing end of the airfoil shape (z = 2b).

(b) A flow with circulation —I" around the original circle in the 2-
plane is given by the complex velocity potential:

'lL’()(Z,) = UZI + U”’— — ? In Zl.

The corresponding flow (with complex velocity potential w(z))
around the airfoil shape is obtained via the transformations:

w(z) = wo{z' [C(z)] }

Show that a physically acceptable solution for the flow around
the airfoil shape is obtained only when the circulation takes on a
specific value equal to

r : _
— =Ua(e™ —€7) or I =4maUsinvy,
2mi

where v is defined by ae ** = b — me?.
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3. EITHER

The equations for small-amplitude gravity waves in calm water of depth

H are:
Vi = 0 forall x, —H < z < 0;

% =0 at 2z = —H,;

o on

5: — o =0
%;BJrgn =0 at z =0;

where ¢ is the velocity potential, # is the surface perturbation, p the
density of water, and g the gravitational acceleration.

(a) Obtain the following solution for the surface perturbation and the
velocity potential:

n(z,t) = mnocos(wt — kx),

w
bz, 2,t) = _ﬁ(/ﬂ{) cosh [k(z + H)] sin(wt — kz).
(b) Derive the following gravity wave dispersion relation and discuss

the dispersive properties of shallow and deep water gravity waves:

w? = gk tanh(kH).

(c) Derive the following expression for the velocity components for a
deep water gravity wave:
u(z,z,t) = mywe cos(wt — kx),

w(z,2z,t) = —ngwesin(wt — k).

(d) It is known that, to the first approximation, a small parcel of
water makes circular motion about a mean position (., z.) on the
passage of a gravity wave. Let the coordinates of the small parcel
of water be z, = z.+ x4, 2, = 2. + z4. Show that the circular
motion is given by the

kze

g = e sin(wt — kz.), zq = mget

cos(wt — kx.).

(¢) Show that the gravity wave induces a drift current of magnitude

2 2k
Udrifr = Ty Wk e™™

by taking the next higher order terms in the equations for 7, and
z4 into consideration.



OR

The figure below is a log-log plot of Drag Coefficient Cp = D/(pU?a?)
versus Reynolds Number Re = Uap/u for viscous flow around a sphere.
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(a) Consider a viscous fluid of density p and viscosity i flowing around
a sphere of radius a. The flow speed far from the sphere is U. Per-
form a dimensional analysis to show that the drag D experienced
by the sphere is expected to depend on the various parameters in

the following manner:
D pal
By S (¥ tahal
pU2a2 ( 7 ) '

where ®(z) is a general function of the argument w.

(b) The Stokes formula gives the drag on a sphere as D = 6mpal.
What is the function ®(z) in Part (i) when the Stokes formula is
valid?

(c) What should be the gradient of the plot when the Stokes formula
is valid? State the range of values of the Reynolds Number where
the Stokes formula is applicable.

(d) State the range of values of the Reynolds Number where the drag
is approximately proportional to U2

(¢) Given the following values of the parameters p = 1,000kgm™2,
p = 0.001kgm™'s~! a = 0.02m, cstimatc the drag forces for
U=05ms?*, 10ms™!, and 20ms~*.

(f) A sharp decrease in the Drag Coefficient is observed at Reynolds
Number around 2.5x10°. Briefly describe the physical phenomena
that cause the sharp drop in drag.
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4.

(a)

For an incompressible Newtonian fluid, the stress tensor is given
by

0 = —D (51;]’ + 2,[1151‘]', where S,‘,j = 5 (81? + BZJ> .
7 i

Derive the kinetic energy equation

1 a /1
= (é—puiui) + 55; (Epuiuiuj +puj - 2,[1. uiSij) = —2[1, SUSZ-J-.

Integrating over a volume V' which includes all locations where
the flow velocity does not vanish, show that the rate of change of
the total kinetic energy of the flow is given by

d 1
-(ﬁ—/‘; EpujujdV = _K/2#Sij5ij dVv.

Write a brief note on Kolmogorov’s 1941 theory for fully devel-
oped, isotropic turbulence. State the basic assumptions and show
how they lead to the following conclusions:

e The length scale n and the velocity scale v of the smallest
eddies are related to the generation length scale £ and velocity
scale u as

7 ~ Re™3/4¢, v ~ Re Yy,

e The inertial subrange energy spectrum FE(k) is expected to

depend on the [—5/3]-power of the wavenumber :

E(k) ~ 353,

where € is the rate of energy cascade.

e Based on the above conclusions, discuss the feasibility of Di-
rect Numerical Simulation of turbulent flow of high Reynolds
number.

— End of Paper -



