NATIONAL UNIVERSITY OF SINGAPORE

PC3243 Photonics

(Semester II: AY 2012-13)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **four (4)** questions and comprises **seven (7)** printed pages.
- 2. Answer any three (3) questions.
- 3. All questions carry equal marks.
- 4. Answers to the questions are to be written in the answer books.
- 5. This is a CLOSED BOOK examination.
- 6. One reference sheet (A4 size, both sides) is allowed for this examination.
- 7. A Table of Constants is provided

1. Waveguide

Consider a planar waveguide in which the refractive index and dielectric constant varies in the x-direction, as shown below:

For an electromagnetic wave propagating along the z-axis, and assuming that there is no spatial variation of the wave in the y-direction, the Maxwell equations for transverse electric (TE) and transverse magnetic (TM) waves may be reduced respectively to:

$$\frac{\partial^2 E_y}{\partial x^2} + (\omega^2 \varepsilon \mu - \beta^2) E_y = 0$$

$$\frac{\partial^2 H_y}{\partial r^2} + (\omega^2 \varepsilon \mu - \beta^2) H_y = 0$$

- (i) By matching the fields and their derivatives according to the boundary conditions, derive the conditions for the allowed guided modes in the form of transcendental equations.
- (ii) Explain the graphic approach to solve the transcendental equations for the allowed modes with a sketch, indicating clearly the range of the first even parity mode and that of the first odd parity mode. For sketching take $n_1 = 3.6$ and $n_2 = 3.4$, and the wavelength $\lambda = 1.0 \mu m$.
- (iii) Show that the optical confinement factor Γ is given by

$$\Gamma = \left\{ 1 + \frac{\cos^2(k_x d/2)}{\gamma \left[d/2 + (1/k_x) \sin(k_x d/2) \cos(k_x d/2) \right]} \right\}^{-1}$$

where

$$k_{x} = \sqrt{n_{r}^{2} k_{0}^{2} - \beta^{2}}$$

$$\gamma = \sqrt{\beta^{2} - n_{r}^{2} k_{0}^{2}}$$

Sketch the optical confinement factor as a function of waveguide thickness d.

2.

- (A) Gain of Semiconductor Laser Materials
- (i) Under ideal conditions at $T \approx 0$ K, show that the quasi-Fermi levels are related to the concentrations of the electron-hole pairs injection $\Delta n (= \Delta p)$ by

$$E_{fc} - E_{fv} = E_g + (3\pi^2)^{2/3} \frac{\hbar^2}{2m_r} (\Delta n)^{2/3}$$

(ii) Hence explain in what ways the material gain curve (such as shown below for GaAs at T > 0 K) depends on the quantity ($E_{fc} - E_{fv}$).

Note: The material gain $g(\hbar\omega)$ of GaAs (bandgap $E_g=1.42$ eV) is given approximately by the equation:

(B) Diode Laser

- (i) Describe with diagrams a typical heterostructure diode laser showing the optical cavity, active region, optical confinement of wave profile and other features.
- (ii) Explain the conditions for threshold gain $g_{th}(\hbar\omega)$ of a diode laser. Sketch the profile of light emission when the laser is below threshold, at threshold and above threshold. Why is it that the gain of a laser is clamped at $g_{th}(\hbar\omega)$?
- (iii) Consider a GaAs/AlGaAs hetero-structure diode laser. The radiative lifetime of the carriers at the threshold is 3.0 ns. If the active region thickness is 0.1 μ m, area is 3.0 $\times 10^{-5}$ cm², and the threshold carrier density n_{th} in the active region is $n_{th} = 1.5 \times 10^{18}$ cm⁻³, what is the threshold current I_{th} ?

3.

(A) p-i-n Photodiode

(i) A reverse biased pin photodiode is illuminated with a short wavelength photon that is absorbed very near the surface as shown.

The photo-generated electron has to diffuse to the depletion region where it is swept into the i-layer and drifted across. Assuming that the absorption occurs uniformly very near the surface of the p+ layer, discuss how the speed of response depends on the applied voltage V across the photodiode.

(ii) Given that in time t, on average an electron diffuses a distance l given by $l = [2D_e t]^{1/2}$, what is the speed of response of the device if the i-layer is 20 μ m, the p^+ layer is 1.0 μ m, and the applied voltage is 100 V? The diffusion coefficient D_e of the electrons in the heavily doped p^+ region is approximately 3 X 10^{-4} m²s⁻¹. The drift velocity vs electric field is shown on the next page.

(B) Solar Cell

- (i) Describe with diagrams the principle of operation of an ideal pn junction solar cell and the generation of photocurrent I_{ph} .
- (ii) Consider the solar cell connected to an external resistive load of resistance *R* as shown.

Derive an expression for the total current through the solar cell. Sketch the *I-V* characteristics and discuss the direction of currents.

(iii) Consider a Si solar cell with the following parameters:

$$A = 10 \text{ cm X } 10 \text{ cm}, \quad l_n = 0.5 \mu \text{m}, \quad W = 2 \mu \text{m}, \quad L_e = 50 \mu \text{m}.$$

Using a generation rate of $G_0 = 10^{18}$ cm⁻³s⁻¹ at wavelength $\lambda = 1.1$ µm and absorption coefficient $\alpha = 2000$ m⁻¹, determine I_{ph} .

4. Second Harmonic Generation

(i) Explain the requirement for phase matching in second harmonic generation. Illustrate your discussion with a birefringent crystal with refractive index ellipsoid shown on next page.

(ii) Given the index ellipsoid as

$$\frac{1}{\left[n_e^{2\omega}(\theta)\right]^2} = \frac{\cos^2\theta}{\left(n_o^{2\omega}\right)^2} + \frac{\sin^2\theta}{\left(n_e^{2\omega}\right)^2} ,$$

derive an expression for the phase matching angle θ_m .

(iii) Show that for a small departure from the phase matching angle θ_m such that $\Delta k \neq 0$, the second harmonic power $P_{2\omega}$ after traveling a distance l as a function of θ may be expressed as

$$P_{2\omega}(\theta) \propto \frac{\sin^2[\beta(\theta - \theta_m)]}{[\beta(\theta - \theta_m)]^2}$$

Hence estimate the reduction in efficiency if the angular deviation $(\theta - \theta_m)$ = 0.001 rad for a crystal of length l = 100 μm in a crystal of KDP pumped by ruby laser pulse.

Hint: Use Taylor series for the phase mismatch $\Delta k(\theta) = \left[k^{2\omega}(\theta) - 2k^{\omega}(\theta)\right]$. Show that

$$\Delta k(\theta) l = -\frac{2\omega l}{c} \sin 2\theta_m \frac{\left(n_e^{2\omega}\right)^{-2} - \left(n_0^{2\omega}\right)^{-2}}{2\left(n_0^{\omega}\right)^{-3}} \left(\theta - \theta_m\right)$$
$$= 2\beta(\theta - \theta_m)$$

END

Photonics Constants

Properties	Ge	Si	GaAs
Atoms/cm³	4.42×10^{22}	5.0×10^{22}	4.42×10^{22}
Atomic weight	72.60	28.09	144.63
Breakdown field(V/cm)	~105	$\sim 3 \times 10^{5}$	$\sim 4 \times 10^{5}$
Crystal structure	Diamond	Diamond	Zincblende
Density (g/cm³)	5.3267	2.328	5.32
Dielectric constant Effective density of	16.0	11.9	13.1
states in conduction band, N_C (cm ⁻³)	1.04×10^{19}	2.8×10^{19}	4.7×10^{17}
Effective density of states in valence band, N_V (cm ⁻³)	6.0×10^{18}	1.04 × 10 ¹⁹	7.0×10^{18}
Effective Mass, m*/mo	* • • •	$m_{i}^{*} = 0.98$	0.067
Electrons	$m^* = 1.64$ $m^* = 0.082$	$m_1 = 0.98$ $m^* = 0.19$	0.007
Holes	$m_1^* = 0.082$ $m_1^* = 0.044$	$m_{ih}^* = 0.19$ $m_{ih}^* = 0.16$	$m_h^* = 0.082$
120103	$m_{hh}^* = 0.28$	$m_{hh}^* = 0.49$	$m_h^* = 0.45$
Electron affinity, $\chi(V)$	4.0	4.05	4.07
Energy gap (eV) at 300 K	0.66	1.12	1.424
ntrinsic carrier concentration (cm ⁻³)	2.4×10^{13}	1.45×10^{10}	1.79×10^{6}
ntrinsic Debye length (µm)	0.68	24	2250
ntrinsic resistivity (Ω-cm)	47	2.3×10^{5}	10 ⁸
attice constant (Å)	5.64613	5.43095	5.6533
finority carrier lifetime (s)	10-3	2.5×10^{-3}	~10-8
fobility (drift)	3900	1500	8500
$(cm^2/V-s)$	1900	450	400

Material	Crystal	Indices	Pockels Coefficients × 10 ⁻¹² m/V	$\frac{K}{m/V^2}$	Comment
LiNbO ₃	Uniaxial	$n_{\alpha} = 2.272$	$r_{13} = 8.6; r_{33} = 30.8$ $r_{22} = 3.4; r_{51} = 28$	sages and place and provide section of the section	$\lambda = 500 \mathrm{nn}$
KDP	Uniaxial	$n_e = 2.187$ $n_o = 1.512$ $n_o = 1.470$	$r_{22} = 3.4, r_{51} = 26$ $r_{41} = 8.8; r_{63} = 10.5$		λ ≈ 546 nn
GaAs	Isotropic	$n_o = 3.6$	$r_{41} = 1.5$		$\lambda \approx 546 \mathrm{nn}$
Glass	Isotropic	$n_o \approx 1.5$	0	3×10^{-15}	
Nitrobenzene	Isotropic	$n_v \approx 1.5$	0	3×10^{-12}	