NATIONAL UNIVERSITY OF SINGAPORE

PC3246 Nuclear Astrophysics

(Semester II: AY 2015-16)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Please write your student number only. Do not write your name.
- 2. This examination paper contains **3 question**s and comprises **6 printed pages**.
- 3. Answer all three questions.
- 4. Answers to the questions are to be written in the answer books.
- 5. This is a closed book examination.
- 6. Data and formulae are included at the end of the paper
- 7. One A4 page cheat sheet is allowed.

1.

An edge-on binary system consists of a neutron star and a main sequence star with $M=15~M_{\odot}$ in circular orbits around the center of mass with a period of 20 days. The neutron star has a mass of 2 M_{\odot} , a radius of 10 km, and emits blackbody radiation with a surface temperature of 1×10⁶K.

- i. Briefly discuss the Mass-luminosity relation for main-sequence stars.
- ii. Calculate the radial velocities of both the main sequence star and the neutron star relative to the center of mass.
- iii. The apparent magnitude of the entire binary system (neutron star and main sequence star combined) is +2.8 magnitudes. What is the apparent magnitude of the neutron star?
- iv. Estimate the distance to this system (in pc).

- 2.
 - a) Briefly answer the following questions:
 - i. Why is diffusive energy transport by electrons more efficient than by ions?
 - ii. What is meant by bound-free absorption?
 - b) The approximate temperature -pressure profile in the outer envelope of a white dwarf, as derived from hydrostatic equilibrium and heat flow by radiative diffusion, is given by:

$$\frac{P^2}{2} = \frac{C}{8.5} T^{8.5} \,. \tag{1}$$

i. Show that the neglect of convection is justified, if one assumes an ideal classical gas and the limit for diffusive transport, as derived in class:

$$\frac{dT}{T} < \left(1 - \frac{1}{\gamma}\right) \frac{dP}{P}.$$
 (2)

ii. Use eq. 1 and the hydrostatic equilibrium condition to show that the radiative temperature gradient in the outer envelope of the classical gas surrounding a white dwarf is given by:

$$\frac{dT}{dr} = -\frac{GM\overline{m}}{4.25r^2k},$$

where *r* is the distance from the center of the white dwarf.

c) Recall that the for an ideal gas the adiabatic index is given by: $\gamma = \frac{2+f}{f}$, where

f is the number of degrees of freedom. γ is also ratio of the heat capacities at constant pressure and at constant volume. Show that the critical temperature gradient for the onset of convection:

$$\frac{dT}{dr}\bigg|_{crit} = \frac{\gamma - 1}{\gamma} \frac{T}{P} \frac{dP}{dr}$$

can also be written as:

$$\left. \frac{dT}{dr} \right|_{crit} = -\frac{g}{c_p},$$

where c_p is the thermal capacity per unit mass at constant pressure and $\,g$ is the acceleration due to gravity.

- 3.
- a) Briefly answer the following questions:
 - i. Which reaction dominates the timescale in the pp chain, and why?
 - ii. Why is there a high nitrogen abundance during the CNO cycle?
- b) The figure below shows a part of the nuclide table, with the elements Gd, Tb and Dy. The shaded squares indicate stable nuclides, and the black arrow shows the isotope supplied by the s-process.

- i. Which isotopes are reached by the s process?
- ii. Which isotopes are reached by the r process?
- iii. Which isotopes are reached by the s process only?
- iv. Which isotopes are reached by the r process only?
- v. Which isotopes cannot be reached by either process? Suggest a process that might be responsible for the abundance of this isotope?

PHYSICAL CONSTANTS AND CONVERSION FACTORS

Symbol	Description	Numerical Value
C	velocity of light in vacuum	299 792 458 m s ⁻¹ , exactly
ε_0	permeability of vacuum permittivity of vacuum where $c = 1/\sqrt{\varepsilon_0 \mu_0}$	$4\pi \times 10^{-7} \text{ N A}^{-2}$ $8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$
h	Planck constant	$6.626 \times 10^{-34} \text{ J s}$
ħ	$h/2\pi$	$1.055 \times 10^{-34} \text{ J s}$
G	gravitational constant	$6.673 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
e	elementary charge	$1.602 \times 10^{-19} \text{ C}$
eV	electronvolt fine structure constant, $e^2/4\pi\varepsilon_0\hbar c$	$1.602 \times 10^{-19} \text{ J}$ 1/137.0
m _e	electron mass	$9.109 \times 10^{-31} \text{ kg}$
$m_e c^2$	electron rest-mass energy	0.511 MeV
μ_B	Bohr magneton, $e\hbar/2m_e$	$9.274 \times 10^{-24} \text{ J T}^{-1}$
R_{∞}	Rydberg energy $\alpha^2 m_e c^2/2$	13.61 eV
<i>u</i> ₀	Bohr radius, $(1/\alpha)$ $(\hbar/m_e c)$	$0.5292 \times 10^{-10} \text{ m}$
Å	angstrom	10 ⁻¹⁰ m
m_p	proton mass	$1.673 \times 10^{-27} \text{ kg}$
$m_p c^2$	proton rest-mass energy	938.272 MeV
$m_n c^2$	neutron rest-mass energy nuclear magneton, $e\hbar/2m_p$	939.566 MeV 5.051 × 10 ⁻²⁷ J T ⁻¹
μ_N fm	femtometre or fermi	10^{-15} m
b	barn	10^{-28} m^2
u <i>N</i> ₄	atomic mass unit, $\frac{1}{12}m(^{12}C \text{ atom})$ Avogadro constant, atoms in gram mol	$1.661 \times 10^{-27} \text{ kg}$ $6.022 \times 10^{23} \text{ mol}^{-1}$
	triple point temperature	273.16 K
κ	Boltzmann constant	$1.381 \times 10^{-23} \text{ J K}^{-1}$
R	molar gas constant, $N_A \kappa$	8.315 J mol ⁻¹ K ⁻¹
σ	Stefan-Boltzmann constant, $(\pi^2/60)(\kappa^4/\hbar^3c^2)$	$5.671 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
	mass of earth	$5.97 \times 10^{24} \text{ kg}$
	mean radius of earth	$6.4 \times 10^6 \text{ m}$
	standard acceleration of gravity standard atmosphere	9.806 65 m s ⁻² , exactly 101 325 Pa, exactly
		· · · · · · · · · · · · · · · · · · ·
	solar mass solar radius	$1.989 \times 10^{30} \text{ kg}$ $6.960 \times 10^8 \text{ m}$
	solar luminosity	$3.862 \times 10^{26} \text{ W}$
	solar effective temperature	5800 K
AU	astronomical unit, mean earth-sun distance	1.496 × 10 ¹¹ m
-	parsec	$3.086 \times 10^{16} \text{ m}$
У	year	$3.156 \times 10^7 \text{ s}$

Formulae

Mass - Luminosity relation for main sequence stars:

$$\frac{L}{L_{\Box}} = \left(\frac{M}{M_{\Box}}\right)^{3.5}$$

Gravitational energy of a uniform density sphere:

$$E_g = -\frac{3}{5} \frac{G M^2}{R}$$

Stellar Magnitudes and Distances

$$m_1 - m_2 = -2.5 \log_{10}(f_1/f_2)$$
 $M = -2.5 \log_{10}(L/L_{\Box}) + 4.72$

$$M = -2.5 \log_{10} (L/L_{\odot}) + 4.72$$

Radiation

$$\lambda v = c$$
 , $\lambda_{\text{max}} T = 0.0029 [K m]$, $E = hv$, $L = 4\pi R^2 \sigma T^4$

Jeans density

$$\rho_{J} > \frac{3}{4\pi M^2} \left(\frac{3kT}{2G\overline{m}}\right)^3$$

Chemical Potential (classical, non-relativistic)

$$\mu(A) = m_A c^2 - kT \ln \left[\frac{g_A n_{QA}}{n_A} \right]$$

$$n_{Q} = \left\lceil \frac{2\pi mkT}{h^2} \right\rceil^{3/2}$$

Chemical Potential (classical, relativistic)

$$\mu(A) = -kT \ln \frac{g_A n_Q}{n_A}$$

$$n_{Q} = 8\pi \left[\frac{kT}{hc} \right]^{3}$$

Gamow Energy

$$E_G = 2(\pi \alpha Z_A Z_B)^2 m_r c^2$$

Gamow Peak

$$E_0 = \left(\frac{E_G(kT)^2}{4}\right)^{1/3}$$

Kepler III

$$P^2 = \frac{4\pi^2}{G(m_1 + m_2)} r^3$$

END OF PAPER

[TO]