Question 1 (a) $T_E = 1.04 \times 10^4 \text{K}$ $R = 2.6 R_{\odot}$ $M = 3.6 M_{\odot}$ $X_1 = 0.7$ $X_4 = 0.3$

i)

$$L = 4\pi R^2 \sigma T_E^4$$

$$M_B = -2.5 \lg \left(\frac{L}{L_{\odot}}\right) + 4.72$$

ii)
$$m = -2.5 \lg \left(\frac{20}{10}\right)^2 + M_B$$

iii)
26.7MeV
$$\times \frac{3.6 M_{\odot}}{4 m_p} \times 0.15 \times 0.70$$

$$iv)$$
$$t_N = \frac{(iii)}{L}$$

Question 1 (b)

Cloud radius,
$$R_c = 2AU$$

 $\rho_J = \frac{3}{4\pi M^2} \left(\frac{3kT}{2G\overline{m}}\right)^3$
 $M = \rho V \propto R^3$
 $\frac{M_1}{M_2} = \left(\frac{R_1}{R_2}\right)^3$
 $\therefore M = 3.6M_{\odot} \left(\frac{2AU}{2.6R_{\odot}}\right)^3$

$$M < \frac{3kT}{2G\overline{m}}R$$
 to be stable, so
 $T > \frac{2GM\overline{m}}{3kR}$, $\overline{m} = \frac{2m_p}{1+3X_1 + \frac{1}{2}X_4}$

Question 2 (i)

Series of reaction in p-p chain,

$$p + p \to d + e^{+} + v_{e} \begin{cases} 2^{3}He \to {}^{4}He + 2p & [Branch I: 85\%, Q_{eff} = 26.2 MeV] \\ p + d \to {}^{3}He + \gamma \end{cases} \begin{cases} 2^{3}He \to {}^{4}He + 2p & [Branch I: 85\%, Q_{eff} = 26.2 MeV] \\ p + {}^{7}Li \to 2{}^{4}He & [Branch II: 15\%, Q_{eff} = 25.2 MeV] \\ p + {}^{7}Be \to {}^{8}B + \gamma & [Branch II: 0.02\%, Q_{eff} = 19.1 MeV] \\ {}^{8}Be^{*} \to 2{}^{4}He & [Branch III: 0.02\%, Q_{eff} = 19.1 MeV] \end{cases}$$

Overall reaction, $4p \rightarrow {}^{4}He + 2e^{+} + 2\nu_{e}$

The slower reactions are at p + p, as p has to convert into n first before fusing. The energy released is approximated by the power law.

The CNO Cycle,

The overall reaction is the same as above.

Question 2 (ii)

p-p chain is dominant in main sequence stars and proto stars, when there isn't heavier elements. In heavier stars, the CNO cycle dominates, as it requires ${}^{12}C$ as a catalyst. CNO cycle is also needed to explain the luminosities of massive main sequence stars, because their luminosities are too high to be explained by the T^4 dependence of p-p chain burning.

Question 2 (iii) $_{77\rho^2}$

$$V_{max} = \frac{2Ze^{-1}}{4\pi\epsilon_0 r_1}, \qquad z = 1, Z = 6$$

 r_1 is the sum of the radii of the two molecules. So $r_1 = 1.2 \times 10^{-15} \left(12^{\frac{1}{3}} + 1 \right) \text{m}$

Question 3 (a)

$$\frac{N_{235}}{N_{238}} = 0.00723, \qquad \frac{N_{235}}{N_{238}}\Big|_{r-p} = 1.6$$

$$t_{\frac{1}{2'}^{235}U} = 7.13 \times 10^8 \text{ years}$$

$$t_{\frac{1}{2'}^{238}U} = 4.51 \times 10^9 \text{ years}$$

$$\begin{split} N_{235} &= N_{235,0} e^{-\lambda_{235} t} \\ N_{238} &= N_{238,0} e^{-\lambda_{238} t} \end{split}$$

Divide the two equations, $0.00723 = 1.6e^{-(\lambda_{235} - \lambda_{238})t}$

$$\lambda = \frac{\ln 2}{\frac{t_1}{2}}, \text{ so}$$
$$t = -\frac{\ln \frac{0.00723}{1.6}}{\ln 2} \left(t_{\frac{1}{2},^{235}U} - t_{\frac{1}{2},^{238}U} \right)$$

Question 3 (b)

Xe	†123 2 h	124	+ 125 17 h	126	+ 127 36 d	128	129	130	131	132	133 5 d	134	135 9 h	136	137 4min
I	+ 122 4 min	+ 123 13 h	+ 124 4 d	+ 125 59 d	+ 126 13 d	127	128 25 min	129 10 ⁷ a	130 12 h	131 8 d	132 2 h	133 21 h	134 52 min	135 7 h	136 84 s
Te	+121 17d	122	123	124	125	126	127 9 h	128	129 70 min	130	131 25 min	132 76h	133 13 min	134 42 min	135 19 s
Sb	+120 16 min	121	122 3 d	123	124 60 d	125 3 a	126 12 d	127 4 d	128 9 h	129 4 h	130 6 min	131 23 min	132 3 min	133 3 min	134 0.75s

Everything in the red circle are the in the stable belt. Any stable element on the top left of the belt are created by the p-process (proton capture) only. Everything on the bottom right of the belt are created by the r-process only (rapid process). Everything on the stable belt can be created by the s-process (slow process), but some of them, if you draw a diagonal line towards the bottom right and does not hit any stable element, can also be created by the r-process. Basically r-process creates stable atoms by many beta decays (moving diagonal up the left). So the answer for this question is:

: Xe-128, Xe-129, Xe-130, Xe-131, Xe-132
: Xe-129, Xe-131, Xe-132, Xe-134, Xe-136
: Xe-129, Xe-131, Xe-132
: Xe-124, Xe-126 (they are shielded by the diagonal-left-up line of the r-process)

Solutions provided by: John Soo

NUS Physics Society © 2014