Question 1

(a) Find the inverse Laplace transform of the following functions
i. $\frac{3 s+1}{(s-1)\left(s^{2}+1\right)}$,
ii. $\frac{2}{\left(s^{2}+1\right)^{2}}$
(b) Given

$$
f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq 1 \\
2-x, & 1 \leq x \leq 2 \\
0, & x \geq 2
\end{array}\right.
$$

find the Fourier cosine transform of $f(x)$ and use it to write $f(x)$ as an integral. Hence evaluate

$$
\int_{0}^{\infty} \frac{\cos ^{2} k \sin ^{2}\left(\frac{k}{2}\right)}{k^{2}} d k
$$

a)
i)

$$
\begin{aligned}
& \tilde{f}(s)=\frac{3 s+1}{(s-1)\left(s^{2}+1\right)}=\frac{2}{s-1}+\frac{1}{s^{2}+1}-2 \frac{s}{s^{2}+1} \\
& f(t)=2 e^{t}+\sin t-2 \cos t
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \tilde{f}(s)=\frac{2}{\left(s^{2}+1\right)^{2}}=2\left(\frac{1}{s^{2}+1}\right)\left(\frac{1}{s^{2}+1}\right) \\
& f(t)=2 \int_{0}^{t} \sin u \sin (t-u) d u \\
& =\int_{0}^{t} \cos (t-2 u)-\cos t d u \\
& =\left[-\frac{1}{2} \sin (t-u)+u \cos t\right]_{0}^{t} \\
& =\sin t+t \cos t
\end{aligned}
$$

b)

$$
\tilde{f}(k)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos k x d x
$$

$$
\begin{aligned}
& =\sqrt{\frac{2}{\pi}}\left[\int_{0}^{1} x \cos k x d x+\int_{1}^{2}(2-x) \cos k x d x\right] \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[x\left(\frac{\sin k x}{k}\right)\right]_{0}^{1}-\int_{0}^{1} \frac{\sin k x}{k} d x+\left[(2-x)\left(\frac{\sin k x}{k}\right)\right]_{1}^{2}+\int_{1}^{2} \frac{\sin k x}{k} d x\right\} \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[\frac{\cos k x}{k^{2}}\right]_{0}^{1}-\left[\frac{\cos k x}{k^{2}}\right]_{1}^{2}\right\} \\
& =\sqrt{\frac{2}{\pi}}\left(\frac{\cos k}{k^{2}}-\frac{1}{k^{2}}-\frac{\cos 2 k}{k^{2}}+\frac{\cos k}{k^{2}}\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{1}{k^{2}}(2 \cos k-\cos 2 k-1) \\
& =\sqrt{\frac{2}{\pi}} \frac{2}{k^{2}}\left(\cos k-\cos { }^{2} k\right) \\
& =\sqrt{\frac{2}{\pi}} \frac{2}{k^{2}} \cos k(1-\cos k) \\
f(x) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \tilde{f}(k) \cos k x d k=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sqrt{\frac{2}{\pi}} \frac{2}{k^{2}} \cos k(1-\cos k) \cos k x d k
\end{aligned}
$$

$$
\text { when } x=1, f(1)=1 \text {, }
$$

$$
1=\frac{4}{\pi} \int_{0}^{\infty} \frac{\cos ^{2} k(1-\cos k)}{k^{2}} d k
$$

$$
=\frac{4}{\pi} \int_{0}^{\infty} \frac{\cos ^{2} k\left[1-1+2 \sin ^{2}\left(\frac{k}{2}\right)\right]}{k^{2}} d k
$$

$$
=\frac{8}{\pi} \int_{0}^{\infty} \frac{\cos ^{2} k \sin ^{2}\left(\frac{k}{2}\right)}{k^{2}} d k
$$

$$
\therefore \int_{0}^{\infty} \frac{\cos ^{2} k \sin ^{2}\left(\frac{k}{2}\right)}{k^{2}} d k=\frac{\pi}{8}
$$

Question 2

In a certain system of units, the electromagnetic stress tensor $M_{i j}$ is given by

$$
M_{i j}=E_{i} E_{j}+B_{i} B_{j}-\frac{1}{2} \delta_{i j}\left(E_{k} E_{k}+B_{k} B_{k}\right),
$$

where the electric and magnetic fields, \vec{E} and \vec{B}, are first-order tensors. Show that $M_{i j}$ is a second-order tensor.

Consider a situation in which $|\vec{E}|=|\vec{B}|$, but the directions of \vec{E} and \vec{B} are not parallel. Show that $\vec{E} \pm \vec{B}$ are principal axes of the stress tensor and find the corresponding principal values. Determine the $3^{\text {rd }}$ principal axis and its corresponding principal value.

$$
\begin{aligned}
M_{i j} & =E_{i} E_{j}+B_{i} B_{j}-\frac{1}{2} \delta_{i j}\left(E_{k} E_{k}+B_{k} B_{k}\right) \\
M_{i j}^{\prime} & =L_{i m} E_{m} L_{j n} E_{n}+L_{i m} B_{m} L_{j n} B_{n}-\frac{1}{2} L_{i p} L_{j q} \delta_{p q}\left(L_{k r} E_{r} L_{k s} E_{s}+L_{k r} B_{r} L_{k s} B_{s}\right) \\
& =L_{i m} L_{j n}\left(E_{m} E_{n}+B_{m} B_{n}\right)-\frac{1}{2} L_{i p} L_{j q} \delta_{p q}\left(\delta_{r s} E_{r} E_{s}+\delta_{r s} B_{r} B_{s}\right) \\
& =L_{i m} L_{j n}\left[E_{m} E_{n}+B_{m} B_{n}-\frac{1}{2} \delta_{m n}\left(E_{r} E_{r}+B_{r} B_{r}\right)\right] \\
& =L_{i m} L_{j n} M_{m n}
\end{aligned}
$$

$\therefore M_{i j}$ is a $2^{\text {nd }}$ order tensor.

We let $v_{i}=E_{i} \pm B_{i}$.

$$
\begin{aligned}
M_{i j} v_{j} & =M_{i j}\left(E_{j} \pm B_{j}\right) \\
& =E_{i} E_{j}\left(E_{j} \pm B_{j}\right)+B_{i} B_{j}\left(E_{j} \pm B_{j}\right)-\frac{1}{2} \delta_{i j}\left(E^{2}+B^{2}\right)\left(E_{j} \pm B_{j}\right) \\
& =E_{i} E^{2} \pm E_{i} E_{j} B_{j}+B_{i} B_{j} E_{j} \pm B_{i} B^{2}-\frac{1}{2}\left(E^{2}+B^{2}\right)\left(E_{i} \pm B_{i}\right) \\
& =E_{i} E^{2} \pm B_{i} E^{2} \pm E_{i} E_{j} B_{j}+B_{i} E_{j} B_{j}-\frac{1}{2}\left(2 E^{2}\right)\left(E_{i} \pm B_{i}\right) \\
& =\left(E_{i} \pm B_{i}\right)\left[E^{2} \pm E_{j} B_{j}-E^{2}\right] \\
& = \pm E_{j} B_{j}\left(E_{i} \pm B_{i}\right) \\
& = \pm(\vec{E} \cdot \vec{B}) v_{i}
\end{aligned}
$$

This shows that $\vec{E} \pm \vec{B}$ are eigenvectors (principal axes) of $M_{i j}$ with principal values $\pm(\vec{E} \cdot \vec{B})$. The $3^{\text {rd }}$ axis is orthogonal to both of these, $(\vec{E}+\vec{B}) \times(\vec{E}-\vec{B})=2(\vec{B} \times \vec{E})$
The principal value for this can be deduced from the trace of $M_{i j}$,
$\operatorname{Tr}\left(M_{i j}\right)=E^{2}+B^{2}-\frac{3}{2}\left(E^{2}+B^{2}\right)=-E^{2}$
Since the two principal values found previously are $\pm \vec{E} \cdot \vec{B}$ which sums to zero, the principal value for this $3^{\text {rd }}$ principal axis is $-E^{2}$.

Question 3

According to Fermat's principle, a light ray travels in a medium from one point to another so that the time of travel given by

$$
\int \frac{d s}{v}
$$

where s is arc length and v is velocity, is a minimum. Show that the path of travel is given by

$$
v y^{\prime \prime}+\left(1+y^{\prime 2}\right) \frac{\partial v}{\partial y}-y^{\prime}\left(1+y^{\prime 2}\right) \frac{\partial v}{\partial x}=0
$$

where $y^{\prime}=\frac{d y}{d x}$ and $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$. Solve the differential equation for $v=\frac{1}{y}$.
$\int \frac{d s}{v}=\int \frac{1}{v} \sqrt{1+y^{\prime 2}} d x$
$F=\frac{1}{v} \sqrt{1+y^{\prime 2}}$
$\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=\frac{\partial F}{\partial y}$
$\frac{d}{d x}\left(\frac{1}{v} \frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=-\frac{1}{v^{2}} \frac{\partial v}{\partial y} \sqrt{1+y^{\prime 2}}$
$\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\left(-\frac{1}{v^{2}}\right)\left(\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} y^{\prime}\right)+\frac{1}{v}\left(\frac{y^{\prime \prime}}{\sqrt{1+y^{\prime 2}}}-\frac{y^{\prime 2} y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}\right)=-\frac{1}{v^{2}} \frac{\partial v}{\partial y} \sqrt{1+y^{\prime 2}}$
$y^{\prime}\left(-\frac{\partial v}{\partial x}-\frac{\partial v}{\partial y} y^{\prime}\right)+v y^{\prime \prime}\left(1-\frac{y^{\prime 2}}{1+y^{\prime 2}}\right)+\frac{\partial v}{\partial y}\left(1+y^{\prime 2}\right)=0$
$-y^{\prime} \frac{\partial v}{\partial x}+\frac{v y^{\prime \prime}}{1+y^{\prime 2}}+\frac{\partial v}{\partial y}=0$
$v y^{\prime \prime}+\left(1+y^{\prime 2}\right) \frac{\partial v}{\partial y}-y^{\prime}\left(1+y^{\prime 2}\right) \frac{\partial v}{\partial x}=0[$ shown $]$

When $v=\frac{1}{y}, \frac{\partial}{\partial y}\left(\frac{1}{y}\right)=-\frac{1}{y^{2}}, \frac{\partial}{\partial x}\left(\frac{1}{y}\right)=0$
$\frac{y^{\prime \prime}}{y}+\frac{1+y^{\prime 2}}{y^{2}}=0$
$y y^{\prime \prime}+1+y^{\prime 2}=0$
$\frac{d}{d x}\left(y y^{\prime}\right)=-1$
$y y^{\prime}=-x+c$
$y d y=(-x+c) d x$
$\frac{y^{2}}{2}=-\frac{x^{2}}{2}+c x+d$
$y=\sqrt{-x^{2}+2 c x+2 d}$

Question 4

(a) Show that if p is prime then the set of rational number pairs (a, b), excluding $(0,0)$, with multiplication defined by $(a, b) \cdot(c, d)=(e, f)$, where

$$
(a+b \sqrt{p})(c+f \sqrt{p})=e+f \sqrt{p}
$$

forms an Abelian group. Show further that the mapping $(a, b) \rightarrow(a,-b)$ is an automorphism.
(b) Show that $\left(\begin{array}{cc}x_{2}^{2} & x_{1} x_{2} \\ x_{1} x_{2} & x_{1}^{2}\end{array}\right)$ is not a Cartesian tensor of order 2.
a) Let a, b, c, d, e, f be rational numbers and p be a prime.
$(a+b \sqrt{p})(c+d \sqrt{p})=(a c+b d p)+(a d+b c) \sqrt{p}$
We see that $e=a c+b d p$ and $f=a d+b c$ are rational number, so it is closed;

$$
\begin{aligned}
(a, b) \cdot[(c, d) \cdot(e, f)] & =(a+b \sqrt{p})[(c+d \sqrt{p})(e+f \sqrt{p})] \\
& =[(a+b \sqrt{p})(c+d \sqrt{p})](e+f \sqrt{p}) \\
& =[(a, b) \cdot(c, d)] \cdot(e, f)
\end{aligned}
$$

So it is associative;
$a+b \sqrt{p} \times \frac{1}{a+b \sqrt{p}}=1, \quad$ where
$\frac{1}{a+b \sqrt{p}}=\frac{a-b \sqrt{p}}{(a+b \sqrt{p})(a-b \sqrt{p})}=\frac{a}{a^{2}-b^{2} p}-\frac{b \sqrt{p}}{a^{2}-b^{2} p}, \quad$ and
$\frac{a}{a^{2}-b^{2} p},-\frac{b}{a^{2}-b^{2} p}$ are rational.
So the inverse exists;
The identity is 1 , which is rational;
Finally $(a, b) \cdot(c, d)=(c, d) \bullet(a, b)$ which is a result of multiplication.
\therefore It forms an Abelian group.
$(a, b) \rightarrow(a,-b)$
We let

$$
(a, b)^{\prime}=(a,-b)=a-b \sqrt{p}, \quad(c, d)^{\prime}=(c,-d)=c-d \sqrt{p}
$$

Then
$[(a, b) \cdot(c, d)]^{\prime}=(a c+b d p, a d+b c)^{\prime}=(a c+b d p,-a d-b c)$
$(a, b)^{\prime} \cdot(c, d)^{\prime}=(a,-b) \cdot(c,-d)=(a c+b d p,-a d-b c)$
\therefore It is an Automorphism.
b) Consider a rotation of the (unprimed) coordinate axes through an angle θ to give the new (primed) axes. Under this rotation,
$x_{1} \rightarrow x_{1}^{\prime}=x_{1} \cos \theta+x_{2} \sin \theta$
$x_{2} \rightarrow x_{2}^{\prime}=-x_{1} \sin \theta+x_{2} \cos \theta$
The transformation matrix of $L_{i j}$ will be $L=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
Now consider the transformation of the first element $v_{11}=x_{2}^{2}$.
$v_{11}^{\prime}=\left(x_{2}^{\prime}\right)^{2}=\left(-x_{1} \sin \theta+x_{2} \cos \theta\right)^{2}=x_{1}^{2} \sin ^{2} \theta-2 x_{1} x_{2} \sin \theta \cos \theta+x_{2}^{2} \cos ^{2} \theta$
However, $v_{11}^{\prime}=L_{1 k} L_{1 l} v_{k l}=x_{1}^{2} \sin ^{2} \theta+2 x_{1} x_{2} \sin \theta \cos \theta+x_{2} \cos ^{2} \theta$
which is not equal to the above equation.
\therefore It is not a $2^{\text {nd }}$ order Cartesian tensor.

