Question 1

A rigid body consists of 4 particles of masses $m, 2 m, 3 m, 4 m$ respectively situated at the points $(a, a, a),(a,-a,-a),(-a, a,-a),(-a,-a, a)$ and connected together by a massless framework.
(a) Find the inertia tensor at the origin and show that the principal moments of inertia are $20 m a^{2},(20 \pm 2 \sqrt{5}) m a^{2}$.
(b) Find the principal axes and verify that they are orthogonal.

$$
I=\sum M\left(r^{2} \delta_{i j}-x_{i} x_{j}\right)
$$

a) $I_{11}=I_{22}=I_{33}=(10 \mathrm{~m}) 2 a^{2}=20 \mathrm{ma}^{2}$

$$
\begin{aligned}
& I_{12}=I_{21}=\sum m(-x y)=m\left(-a^{2}+2 a^{2}+3 a^{2}-4 a^{2}\right)=0 \\
& I_{13}=I_{31}=\sum m(-x z)=m\left(-a^{2}+2 a^{2}-3 a^{2}+4 a^{2}\right)=0 \\
& I_{23}=I_{32}=m\left(-a^{2}-2 a^{2}+3 a^{2}+4 a^{2}\right)=4 m a^{2}
\end{aligned}
$$

$$
\therefore I=m a^{2}\left(\begin{array}{ccc}
20 & 0 & 2 \\
0 & 20 & 4 \\
2 & 4 & 20
\end{array}\right)=2 m a^{2}\left(\begin{array}{ccc}
10 & 0 & 1 \\
0 & 10 & 2 \\
1 & 2 & 10
\end{array}\right)
$$

$$
\operatorname{det}(\vec{I}-\lambda \mathbb{1})=\left|\begin{array}{ccc}
10-\lambda & 0 & 1 \\
0 & 10-\lambda & 2 \\
1 & 2 & 10-\lambda
\end{array}\right|=(10-\lambda)\left[(10-\lambda)^{2}-5\right]=0
$$

$$
\lambda=10,10 \pm \sqrt{5}
$$

\therefore the principle moments of inertia,
$20 m a^{2}, 2 m a^{2}(10 \pm \sqrt{5})$
b) for $\lambda=10$,
$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\overrightarrow{0}, \quad z=0, x=2 y, \quad$ the axis $=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right) \rightarrow \frac{1}{\sqrt{5}}\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
for $\lambda=10+\sqrt{5}$,
$\left(\begin{array}{ccc}-\sqrt{5} & 0 & 1 \\ 0 & -\sqrt{5} & 2 \\ 1 & 2 & -\sqrt{5}\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\overrightarrow{0}$,
$z=\sqrt{5} x, 2 z=\sqrt{5} y, \quad$ the axis $=\left(\begin{array}{c}1 \\ 2 \\ \sqrt{5}\end{array}\right) \rightarrow \frac{1}{\sqrt{10}}\left(\begin{array}{c}1 \\ 2 \\ \sqrt{5}\end{array}\right)$
for $\lambda=10+\sqrt{5}$,
$z=-\sqrt{5} x, 2 z=-\sqrt{5} y, \quad$ the axis $=\left(\begin{array}{c}1 \\ 2 \\ -\sqrt{5}\end{array}\right) \rightarrow \frac{1}{\sqrt{10}}\left(\begin{array}{c}1 \\ 2 \\ -\sqrt{5}\end{array}\right)$
$\frac{1}{\sqrt{10}}\left(\begin{array}{c}1 \\ 2 \\ \sqrt{5}\end{array}\right) \times \frac{1}{\sqrt{10}}\left(\begin{array}{c}1 \\ 2 \\ -\sqrt{5}\end{array}\right)=\frac{1}{\sqrt{5}}\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
and so they are orthogonal to each other.

Question 2

(a) Use the method of Laplace transform to evaluate the following integral

$$
\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} d t
$$

(b) Find the Fourier cosine transform of

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq-a \\
2(x+a), & -a<x \leq 0 \\
-2(x-a), & 0<x<a \\
0, & x \geq a
\end{array}\right.
$$

Hence, evaluate

$$
\int_{0}^{\infty} \frac{1-\cos k}{k^{2}} d k
$$

a) Compare the definition of Laplace transform with the integral,
$\tilde{f}(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$, and $\quad \int_{0}^{\infty} \frac{\sin t}{t} e^{-t} d t$
We have $f(t)=\frac{\sin t}{t}, s=1$.
$L[\sin t]=\frac{\omega}{s^{2}+\omega^{2}}$
$L\left[\frac{\sin t}{t}\right]=\int_{s}^{\infty} \frac{1}{s^{2}+1} d s^{\prime}=\left[\tan ^{-1} s^{\prime}\right]_{s}^{\infty}=\frac{\pi}{2}-\tan ^{-1} s$
Substitute $s=1$,

$$
\int_{0}^{\infty} \frac{\sin t}{t} e^{-t} d t=\frac{\pi}{2}-\tan ^{-1} 1=\frac{\pi}{4}
$$

b)

Fourier cosine transform,

$$
\begin{aligned}
\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos k x d x & =\sqrt{\frac{2}{\pi}} \int_{0}^{a}-2(x-a) \cos k x d x \\
& =\sqrt{\frac{2}{\pi}}\left\{\left[-\frac{2}{k}(x-a) \sin k x\right]_{0}^{a}+\int_{0}^{a} \frac{2}{k} \sin k x d x\right\} \\
& =\sqrt{\frac{2}{\pi}}\left[-\frac{2}{k^{2}} \cos k x\right]_{0}^{a} \\
& =\sqrt{\frac{8}{\pi}}\left(\frac{1-\cos k a}{k^{2}}\right)
\end{aligned}
$$

$f(x)=\frac{4}{\pi} \int_{0}^{\infty} \frac{1-\cos k a}{k^{2}} \cos k x d k$
We let $a=1, x=0$,
$f(0)=2=\frac{4}{\pi} \int_{0}^{\infty} \frac{1-\cos k}{k^{2}} d k$
$\therefore \int_{0}^{\infty} \frac{1-\cos k}{k^{2}} d k=\frac{\pi}{2}$

Question 3

(a) Consider 2 sets \mathcal{S} and \mathcal{S}^{\prime} defined as
$\mathcal{S}=\{1,2,3,4\}$ under multiplication $(\bmod 5)$
$\mathcal{S}^{\prime}=\{1, i,-1,-i\}$ under ordinary multiplication of complex numbers where
$i=\sqrt{-1}$. Show that \mathcal{S} and \mathcal{S}^{\prime}
i. each forms a group, and
ii. are isomorphic to each other.
(b) If x and y are 2 elements of any group, prove that $x y$ and $y x$ have the same order.
a) i) \mathcal{S}

	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

ii) \mathcal{S}^{\prime}

	$\mathbf{1}$	\mathbf{i}	-1	$-\mathbf{i}$
$\mathbf{1}$	1	i	-1	-i
\mathbf{i}	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

Both \mathcal{S} and \mathcal{S}^{\prime} are closed, multiplication associative, every element has its inverse, and the identity is in the group. \therefore they both form a group.
ii) we can set $\mathcal{S} \rightarrow \mathcal{S}^{\prime}$ with elements $1 \rightarrow 1,2 \rightarrow-i, 3 \rightarrow i, 4 \rightarrow-1$ and we find that $(X Y)^{\prime}=X^{\prime} Y^{\prime}$, one-to-one and onto. \therefore it is isomorphic to each other.
b) Since the groups are Abelian, we have $x y=y x=z$ for some z and therefore they should have the same order.

Question 4

Solve the Euler-Lagrange equation that makes the following integral stationary

$$
I=\int_{x_{0}}^{x_{1}}\left(x^{2} y^{\prime 2}+2 y^{2}+2 x y\right) d x
$$

$F=x^{2} y^{\prime 2}+2 y^{2}+2 x y$
$\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}=\frac{\partial F}{\partial y}$
$\frac{d}{d x}\left(2 x^{2} y^{\prime}\right)=4 y+2 x$
$4 x y^{\prime}+2 x^{2} y^{\prime \prime}=4 y+2 x$
$x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=x$
By using substitution $x=e^{u}$,
$\frac{d y}{d x}=\frac{1}{e^{u}} \frac{d y}{d u}, \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{e^{2 u}}\left(\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u}\right)$
$e^{2 u} \frac{1}{e^{2 u}}\left(\frac{d^{2} y}{d u^{2}}-\frac{d y}{d u}\right)+2 e^{u} \frac{1}{e^{u}} \frac{d y}{d u}-2 y=e^{u}$
$\frac{d^{2} y}{d u^{2}}+\frac{d y}{d u}-2 y=e^{u}$
auxiliary equation, $n^{2}+n-2=0 \quad \Rightarrow \quad n=1,-2$
complimentary function, $y_{h}=A e^{u}+B e^{-2 u}=A x+B x^{-2}$
particular integral, $y_{p}=C u e^{u}$,
$y_{p}^{\prime}=C\left(u e^{u}+e^{u}\right), \quad y_{p}^{\prime \prime}=C\left(2 e^{u}+u e^{u}\right)$
$C\left(2 e^{u}+u e^{u}\right)+C\left(u e^{u}+e^{u}\right)-2 C u e^{u}=e^{u} \Rightarrow C=\frac{1}{3}$
$\therefore y=y_{h}+y_{p}=A x+\frac{B}{x^{2}}+\frac{1}{3} u e^{u}=A x+\frac{B}{x^{2}}+\frac{1}{3} x \ln x$

Solutions provided by: A/Prof Paul Lim (Q1) and John Soo (Q2, Q3, Q4)

