PC3274 Mathematical Methods in Physics II

2017/2018 Examination Model Answers

1. (a)

$$
\begin{aligned}
1^{i} & =\exp [i \operatorname{Ln}(1)] \\
& =\exp [i(\ln 1+i 0+2 \pi i n)] \\
& =\exp (-2 \pi n)
\end{aligned}
$$

where n is any integer. These points lie along the positive real axis.
(b)(i) There is one order-2 pole at $z=0$, and two simple (order- 1) poles at $z=2$ and $z=\frac{1}{2}$.

Calculate residues:

$$
\begin{array}{rlrl}
\operatorname{Res}(0) & =\lim _{z \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[z^{2} f(z)\right] \\
& =\lim _{z \rightarrow 0} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{i\left(z^{4}+1\right)}{2(z-2)(2 z-1)}\right] \\
& =\lim _{z \rightarrow 0}\left[\frac{4 i z^{3}}{2(z-2)(2 z-1)}-\frac{i\left(z^{4}+1\right)}{2(z-2)^{2}(2 z-1)}-\frac{2 i\left(z^{4}+1\right)}{2(z-2)(2 z-1)^{2}}\right] \\
& =\frac{5 i}{8} & \\
\operatorname{Res}(2) & =\lim _{z \rightarrow 2}[(z-2) f(z)] & \operatorname{Res}\left(\frac{1}{2}\right) & =\lim _{z \rightarrow \frac{1}{2}}\left[\left(z-\frac{1}{2}\right) f(z)\right] \\
& =\lim _{z \rightarrow 2}\left[\frac{i\left(z^{4}+1\right)}{2 z^{2}(2 z-1)}\right] & =\lim _{z \rightarrow \frac{1}{2}}\left[\frac{i\left(z^{4}+1\right)}{4 z^{2}(z-2)}\right] \\
& =\frac{17 i}{24} & & =-\frac{17 i}{24}
\end{array}
$$

(ii) Since $z=\mathrm{e}^{i \theta}$, we have

$$
\begin{aligned}
\cos \theta & =\frac{1}{2}\left(z+z^{-1}\right) \\
\cos 2 \theta & =\frac{1}{2}\left(z^{2}+z^{-2}\right)
\end{aligned}
$$

Also, $-i \frac{\mathrm{~d} z}{z}=\mathrm{d} \theta$. Denoting the unit circle by C, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5-4 \cos \theta} \mathrm{~d} \theta & =\int_{C} \frac{\frac{1}{2}\left(z^{2}+z^{-2}\right)}{5-2\left(z+z^{-1}\right)} \frac{-i \mathrm{~d} z}{z} \\
& =\int_{C} \frac{-i\left(z^{4}+1\right)}{2 z^{2}\left[5 z-2\left(z^{2}+1\right)\right]} \mathrm{d} z \\
& =\int_{C} \frac{i\left(z^{4}+1\right)}{2 z^{2}\left(2 z^{2}-5 z+2\right)} \mathrm{d} z \\
& =\int_{C} \frac{i\left(z^{4}+1\right)}{2 z^{2}(z-2)(2 z-1)} \mathrm{d} z \\
& =\int_{C} f(z) \mathrm{d} z
\end{aligned}
$$

Since C encloses the poles at $z=0$ and $z=\frac{1}{2}$, by the residue theorem,

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i\left[\operatorname{Res}(0)+\operatorname{Res}\left(\frac{1}{2}\right)\right]
$$

Hence

$$
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5-4 \cos \theta} \mathrm{~d} \theta=2 \pi i\left(\frac{5 i}{8}-\frac{17 i}{24}\right)=\frac{\pi}{6}
$$

2. (a) Length of an infinitesimal segment along the path:

$$
\mathrm{d} s=\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}}=\sqrt{1+y^{\prime 2}} \mathrm{~d} x
$$

Time taken for particle to traverse this infinitesimal segment:

$$
\mathrm{d} t=\frac{\mathrm{d} s}{v(y)}=\frac{\sqrt{1+y^{\prime 2}}}{v(y)} \mathrm{d} x
$$

Total time taken:

$$
I[y(x)]=\int \mathrm{d} t=\int_{0}^{x_{0}} \frac{\sqrt{1+y^{\prime 2}}}{v(y)} \mathrm{d} x
$$

Thus

$$
F\left(y, y^{\prime}\right)=\frac{\sqrt{1+y^{\prime 2}}}{v(y)}
$$

Since F does not depend on x explicitly, the Euler-Lagrange equation becomes the Beltrami identity:

$$
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=\frac{\sqrt{1+y^{\prime 2}}}{v(y)}-\frac{y^{\prime 2}}{v(y) \sqrt{1+y^{\prime 2}}}=\text { const }
$$

Call this constant $\frac{1}{k}$, so

$$
\frac{1}{v(y) \sqrt{1+y^{\prime 2}}}=\frac{1}{k}
$$

Rearranging:

$$
y^{\prime 2}=\frac{k^{2}-v(y)^{2}}{v(y)^{2}}
$$

Thus

$$
y^{\prime}= \pm \sqrt{\frac{k^{2}-v(y)^{2}}{v(y)^{2}}}
$$

or

$$
\mathrm{d} x= \pm \sqrt{\frac{v(y)^{2}}{k^{2}-v(y)^{2}}} \mathrm{~d} y
$$

(b) Let $v(y)=a y$. Change variable $y=\frac{k}{a} \sin z, \mathrm{~d} y=\frac{k}{a} \cos z \mathrm{~d} z$, so that

$$
\begin{aligned}
\mathrm{d} x & = \pm \sqrt{\frac{a^{2} y^{2}}{k^{2}-a^{2} y^{2}}} \mathrm{~d} y \\
& = \pm \sqrt{\frac{k^{2} \sin ^{2} z}{k^{2}-k^{2} \sin ^{2} z}} \frac{k}{a} \cos z \mathrm{~d} z \\
& = \pm \frac{k}{a} \sin z \mathrm{~d} z
\end{aligned}
$$

Integrate:

$$
x+c=\mp \frac{k}{a} \cos z
$$

where c is a constant.
Hence

$$
\begin{aligned}
y(x) & =\frac{k}{a} \sqrt{1-\cos ^{2} z} \\
& =\sqrt{\frac{k^{2}}{a^{2}}-\frac{k^{2}}{a^{2}} \cos ^{2} z} \\
& =\sqrt{\frac{k^{2}}{a^{2}}-(x+c)^{2}}
\end{aligned}
$$

which describes a circle of radius k / a and centre at $(-c, 0)$.
Impose BCs:
At $x=0$:

$$
y(0)=\sqrt{\frac{k^{2}}{a^{2}}-c^{2}}=0
$$

which implies that

$$
c= \pm \frac{k}{a}
$$

As $x=x_{0}$ is a variable endpoint, we impose

$$
y^{\prime}(x)=-\frac{x+c}{\sqrt{\frac{k^{2}}{a^{2}}-(x+c)^{2}}}=0
$$

at this point. This implies that

$$
c=-x_{0}
$$

and

$$
\frac{k^{2}}{a^{2}}=x_{0}^{2}
$$

The solution is thus

$$
y(x)=\sqrt{x_{0}^{2}-\left(x-x_{0}\right)^{2}}
$$

3. (a) Group multiplication table:

	1 A B C
I	I A B C
A	A I C B
B	B C I A
C	C B A

It is an Abelian group, since the table is symmetric about the diagonal.
(b) Since \mathcal{G} is Abelian, it has 4 conjugacy classes. This is equal to the number N of inequivalent irreps that \mathcal{G} has. Moreover, \mathcal{G} is a group of order $g=4$. By the summation rule for irreps,

$$
\sum_{i}^{4} n_{i}^{2}=4
$$

The only way that this can be satisfied is if $n_{1}=n_{2}=n_{3}=n_{4}=1$, i.e., \mathcal{G} has 4 one-dimensional irreps. In particular, it cannot have any two-dimensional irreps.
(c) The first irrep is just the trivial representation:

$$
\{\mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\} \mapsto\{1,1,1,1\}
$$

Since $A^{2}=I$, we have

$$
\mathrm{D}(\mathrm{~A})^{2}=\mathrm{D}(\mathrm{I})=1
$$

i.e.,

$$
\mathrm{D}(\mathrm{~A})= \pm 1
$$

Similarly, $B^{2}=I$ and $C^{2}=I$ imply that

$$
\mathrm{D}(\mathrm{~B})= \pm 1, \quad \mathrm{D}(\mathrm{C})= \pm 1
$$

Suppose $D(A)=+1$. From $A B=C$, we see that $D(A) D(B)=D(C)$, i.e., $D(B)=D(C)$. On the other hand, if $D(A)=-1$, then $D(B)=-D(C)$. Thus, the other 3 irreps are

$$
\begin{aligned}
\{\mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\} & \mapsto\{1,1,-1,-1\} \\
\{\mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\} & \mapsto\{1,-1,1,-1\} \\
\{\mathrm{I}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}\} & \mapsto\{1,-1,-1,1\}
\end{aligned}
$$

Character table:

	$\{\mathrm{I}\}$	$\{\mathrm{A}\}$	$\{\mathrm{B}\}$	$\{\mathrm{C}\}$
A_{1}	1	1	1	1
$\mathrm{~A}_{2}$	1	1	-1	-1
$\mathrm{~A}_{3}$	1	-1	1	-1
$\mathrm{~A}_{4}$	1	-1	-1	1
D	2	-2	0	0

where in the last row we have listed the characters for the representation given in the question. It can be seen that

$$
\mathrm{D}=\mathrm{A}_{3} \oplus \mathrm{~A}_{4}
$$

Thus the diagonal form of the representative matrices are

$$
\mathrm{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathrm{A}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), \quad \mathrm{B}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathrm{C}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

4. (a) Since we have $A^{\prime}=L A$ and $B^{\prime}=L B$, this implies L must have the form

$$
\mathrm{L}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 1 & a \\
0 & 0 & b \\
-1 & 1 & c
\end{array}\right)
$$

We determine a, b and c by requiring that L is orthogonal and satisfies $\operatorname{det}(\mathrm{L})=+1$

$$
\mathrm{LL}^{\mathrm{T}}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & a \\
0 & 0 & b \\
-1 & 1 & c
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
a & b & c
\end{array}\right)=\mathrm{I}
$$

giving $a=0, b= \pm \sqrt{2}$ and $c=0$. The determinant of L is $\frac{1}{2 \sqrt{2}}(-b-b+0)$, thus requiring that $b=-\sqrt{2}$. Hence

$$
\mathrm{L}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & -\sqrt{2} \\
-1 & 1 & 0
\end{array}\right)
$$

Now the transformation law for a second-order tensor $T_{i j}^{\prime}=L_{i k} L_{j l} T_{k l}$ is equivalent to the matrix product $\mathrm{T}^{\prime}=\mathrm{LTL}^{\mathrm{T}}$. We have

$$
\begin{aligned}
\mathrm{T}^{\prime} & =\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & -\sqrt{2} \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & -\sqrt{2} & 0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & -2 \sqrt{2} \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 1 \\
0 & -\sqrt{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(b) In this case, L has the form

$$
\mathbf{L}=\left(\begin{array}{lll}
0 & a & d \\
0 & b & e \\
1 & c & f
\end{array}\right)
$$

Now,

$$
\mathrm{LL}^{\mathrm{T}}=\left(\begin{array}{lll}
0 & a & d \\
0 & b & e \\
1 & c & f
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 1 \\
a & b & c \\
d & e & f
\end{array}\right)=\left(\begin{array}{ccc}
a^{2}+d^{2} & a b+d e & a c+d f \\
a b+d e & b^{2}+e^{2} & b c+e f \\
a c+d f & b c+e f & 1+c^{2}+f^{2}
\end{array}\right)=\mathrm{I}
$$

The last component (the 33 -component) implies that $c=f=0$. The remaining components give:

$$
\begin{align*}
& a^{2}+d^{2}=1 \tag{1}\\
& a b+d e=0 \tag{2}\\
& b^{2}+e^{2}=1 \tag{3}
\end{align*}
$$

(These equations can be solved, but we don't need to). This also turns L into the form

$$
\mathrm{L}=\left(\begin{array}{lll}
0 & a & d \\
0 & b & e \\
1 & 0 & 0
\end{array}\right)
$$

Thus we have

$$
\begin{aligned}
\mathrm{T}^{\prime} & =\left(\begin{array}{lll}
0 & a & d \\
0 & b & e \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
a & b & 0 \\
d & e & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & a & 2 d \\
0 & b & 2 e \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
a & b & 0 \\
d & e & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a^{2}+2 d^{2} & a b+2 d e & 0 \\
a b+2 d e & b^{2}+2 e^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Using Eqs. (1)-(3), we have

$$
\mathrm{T}^{\prime}=\left(\begin{array}{ccc}
1+d^{2} & d e & 0 \\
d e & 1+e^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Since the first component is 1 , this means that $d=0$. From Eq. (1), $a= \pm 1$. From Eq. (2), $a b=0$, i.e., $b=0$. From Eq. (3), $e= \pm 1$. Hence

$$
\mathrm{T}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

