
PC3274 Mathematial Methods in Physis II

2017/2018 Examination Model Answers

1. (a)

1i = exp [iLn (1)]

= exp [i(ln 1 + i0 + 2πin)]

= exp (−2πn)

where n is any integer. These points lie along the positive real axis.

(b)(i) There is one order-2 pole at z = 0, and two simple (order-1) poles at z = 2 and

z = 1

2
.

Calculate residues:

Res
(

0
)

= lim
z→0

d

dz

[

z2f(z)
]

= lim
z→0

d

dz

[

i(z4 + 1)

2(z − 2)(2z − 1)

]

= lim
z→0

[

4iz3

2(z − 2)(2z − 1)
− i(z4 + 1)

2(z − 2)2(2z − 1)
− 2i(z4 + 1)

2(z − 2)(2z − 1)2

]

=
5i

8

Res
(

2
)

= lim
z→2

[

(

z − 2
)

f(z)
]

= lim
z→2

[

i(z4 + 1)

2z2(2z − 1)

]

=
17i

24

Res
(

1

2

)

= lim
z→ 1

2

[

(

z − 1

2

)

f(z)
]

= lim
z→ 1

2

[

i(z4 + 1)

4z2(z − 2)

]

= −17i

24

(ii) Since z = eiθ, we have

cos θ = 1

2
(z + z−1)

cos 2θ = 1

2
(z2 + z−2)
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Also, −idz
z

= dθ. Denoting the unit circle by C, we have

∫

2π

0

cos 2θ

5− 4 cos θ
dθ =

∫

C

1

2
(z2 + z−2)

5− 2(z + z−1)

−i dz

z

=

∫

C

−i(z4 + 1)

2z2[5z − 2(z2 + 1)]
dz

=

∫

C

i(z4 + 1)

2z2(2z2 − 5z + 2)
dz

=

∫

C

i(z4 + 1)

2z2(z − 2)(2z − 1)
dz

=

∫

C

f(z) dz

Since C encloses the poles at z = 0 and z = 1

2
, by the residue theorem,

∫

C

f(z) dz = 2πi
[

Res(0) + Res
(

1

2

)]

Hence
∫

2π

0

cos 2θ

5− 4 cos θ
dθ = 2πi

(

5i

8
− 17i

24

)

=
π

6

2. (a) Length of an infinitesimal segment along the path:

ds =
√

dx2 + dy2 =
√

1 + y′2 dx

Time taken for particle to traverse this infinitesimal segment:

dt =
ds

v(y)
=

√

1 + y′2

v(y)
dx

Total time taken:

I[y(x)] =

∫

dt =

∫ x0

0

√

1 + y′2

v(y)
dx

Thus

F (y, y′) =

√

1 + y′2

v(y)

Since F does not depend on x explicitly, the Euler–Lagrange equation becomes the Bel-

trami identity:

F − y′
∂F

∂y′
=

√

1 + y′2

v(y)
− y′2

v(y)
√

1 + y′2
= const
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Call this constant 1

k
, so

1

v(y)
√

1 + y′2
=

1

k

Rearranging:

y′2 =
k2 − v(y)2

v(y)2

Thus

y′ = ±
√

k2 − v(y)2

v(y)2

or

dx = ±
√

v(y)2

k2 − v(y)2
dy

(b) Let v(y) = ay. Change variable y = k
a
sin z, dy = k

a
cos z dz, so that

dx = ±
√

a2y2

k2 − a2y2
dy

= ±

√

k2 sin2 z

k2 − k2 sin2 z

k

a
cos z dz

= ±k

a
sin z dz

Integrate:

x+ c = ∓k

a
cos z

where c is a constant.

Hence

y(x) =
k

a

√

1− cos2 z

=

√

k2

a2
− k2

a2
cos2 z

=

√

k2

a2
− (x+ c)2

which describes a circle of radius k/a and centre at (−c, 0).

Impose BCs:

At x = 0:

y(0) =

√

k2

a2
− c2 = 0
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which implies that

c = ±k

a

As x = x0 is a variable endpoint, we impose

y′(x) = − x+ c
√

k2

a2 − (x+ c)2
= 0

at this point. This implies that

c = −x0

and
k2

a2
= x2

0

The solution is thus

y(x) =
√

x2
0
− (x− x0)2

3. (a) Group multiplication table:

I A B C

I I A B C

A A I C B

B B C I A

C C B A I

It is an Abelian group, since the table is symmetric about the diagonal.

(b) Since G is Abelian, it has 4 conjugacy classes. This is equal to the number N of

inequivalent irreps that G has. Moreover, G is a group of order g = 4. By the summation

rule for irreps,
4

∑

i

n2

i = 4

The only way that this can be satisfied is if n1 = n2 = n3 = n4 = 1, i.e., G has 4

one-dimensional irreps. In particular, it cannot have any two-dimensional irreps.

(c) The first irrep is just the trivial representation:

{I,A,B,C} 7→ {1, 1, 1, 1}
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Since A
2 = I, we have

D(A)2 = D(I) = 1

i.e.,

D(A) = ±1

Similarly, B2 = I and C
2 = I imply that

D(B) = ±1 , D(C) = ±1

Suppose D(A) = +1. From AB = C, we see that D(A)D(B) = D(C), i.e., D(B) = D(C). On

the other hand, if D(A) = −1, then D(B) = −D(C). Thus, the other 3 irreps are

{I,A,B,C} 7→ {1, 1,−1,−1}

{I,A,B,C} 7→ {1,−1, 1,−1}

{I,A,B,C} 7→ {1,−1,−1, 1}

Character table:
{I} {A} {B} {C}

A1 1 1 1 1
A2 1 1 −1 −1
A3 1 −1 1 −1
A4 1 −1 −1 1
D 2 −2 0 0

where in the last row we have listed the characters for the representation given in the

question. It can be seen that

D = A3 ⊕ A4

Thus the diagonal form of the representative matrices are

I =

(

1 0
0 1

)

, A =

(

−1 0
0 −1

)

, B =

(

1 0
0 −1

)

, C =

(

−1 0
0 1

)

4. (a) Since we have A
′ = LA and B

′ = LB, this implies L must have the form

L =
1√
2





1 1 a
0 0 b
−1 1 c
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We determine a, b and c by requiring that L is orthogonal and satisfies det(L) = +1

LL
T =

1

2





1 1 a
0 0 b
−1 1 c









1 0 −1
1 0 1
a b c



 = I

giving a = 0, b = ±
√
2 and c = 0. The determinant of L is 1

2
√
2
(−b− b+0), thus requiring

that b = −
√
2. Hence

L =
1√
2





1 1 0
0 0 −

√
2

−1 1 0





Now the transformation law for a second-order tensor T ′
ij = LikLjlTkl is equivalent to the

matrix product T′ = LTL
T. We have

T
′ =

1

2





1 1 0
0 0 −

√
2

−1 1 0









1 0 0
0 1 0
0 0 2









1 0 −1
1 0 1
0 −

√
2 0





=
1

2





1 1 0
0 0 −2

√
2

−1 1 0









1 0 −1
1 0 1
0 −

√
2 0





=





1 0 0
0 2 0
0 0 1





(b) In this case, L has the form

L =





0 a d
0 b e
1 c f





Now,

LL
T =





0 a d
0 b e
1 c f









0 0 1
a b c
d e f



 =





a2 + d2 ab+ de ac+ df
ab+ de b2 + e2 bc+ ef
ac+ df bc+ ef 1 + c2 + f2



 = I

The last component (the 33-component) implies that c = f = 0. The remaining compo-

nents give:

a2 + d2 = 1 (1)

ab+ de = 0 (2)

b2 + e2 = 1 (3)
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(These equations can be solved, but we don’t need to). This also turns L into the form

L =





0 a d
0 b e
1 0 0





Thus we have

T
′ =





0 a d
0 b e
1 0 0









1 0 0
0 1 0
0 0 2









0 0 1
a b 0
d e 0





=





0 a 2d
0 b 2e
1 0 0









0 0 1
a b 0
d e 0





=





a2 + 2d2 ab+ 2de 0
ab+ 2de b2 + 2e2 0

0 0 1





Using Eqs. (1)–(3), we have

T
′ =





1 + d2 de 0
de 1 + e2 0
0 0 1





Since the first component is 1, this means that d = 0. From Eq. (1), a = ±1. From Eq. (2),

ab = 0, i.e., b = 0. From Eq. (3), e = ±1. Hence

T
′ =





1 0 0
0 2 0
0 0 1
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