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Question 1.

Briefly explain all the following items.
(a) WKB quantization rule
(b) Lippmann-Schwinger equation in scattering theory
(¢) Heisenberg representation
(d) Einstein A and B coefficients

(e) Fine structure of hydrogen atom

Question 2.

An unperturbed quantum system is described by a simple Hamiltonian I 0 which has only
three eigenstates. The first two are degenerate, with the common eigenvalue E?, and the
third state has a different eigenvalue E. Consider now the effects of a perturbation V. In
the presence of the perturbation, the full Hamiltonian in representation of // O_eigenstates is

given by the following matrix:

E° 0 0 0C A
H=H+V=|0E 0|+|co B, (1)
0 0 K ABO

where A, B, and C are small and real matrix elements arising from the perturbation.

(a) Using the non-degenerate perturbation theory, find the first-order and sccond-order
corrections to the non-degenerate eigenvalue, as well as the first-order correction to

the associated eigenfunction.

(b) Using the degenerate perturbation theory, find the correct zeroth-order eigenstates

and the first-order corrections to the energy eigenvalue.

(c) Consider now a situation in which the perturbation V is suddenly switched on. If
the system is initially prepared on one of the two degenerate states, find the time-
dependence of the population on the nondegenerate state (you may directly use first-

order time-dependent perturbation theory).



Question 3.

Using variational principle calculations, estimate the ground state energy of a particle (of
mass m) moving in a one-dimensional potential V (z) for z > 0, where V(2) =400 for 2 =0
and V(z) = ¢z for z > 0, with ¢ > 0. This kind of potential describes a ball bouncing on a

hard floor in the presence of gravity. You may need the following integral:
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(a) The suggested trial wavefunction is Az exp(—bz2). Justify this trial wavefunction.

(b) What is your estimate for a fixed b and what is your best prediction by optimizing b ?

Question 4.
Consider the adiabatic evolution of a quantum system with a time-dependent Hamiltonian
HIA1)], where A(t) is the adiabatic parameter varying slowly with time £. The instantaneous

eigenstates of H[\(t)] are given by [n[A(2)]), with nondegenerate eigenvalues I, [A()].

(a) At time ¢ = 0 the system is prepared on the eigenstate 11 [A(0)]) of H[A(0)]. Under
the adiabatic approximation, write down the time-evolving wavefunction of the system

with explicit expressions of a dynamical phase and a geometric phase.

(b) Based on the result in (a), construct the unitary transformation operator U/(t,0) (under
the adiabatic approximation) that describes the mapping from an arbitrary initial state

to a final state at time t.

(c) If the unitary operator U(£,0) constructed in (b) is an ezact propagator associated

with a Hamiltonian ['(¢), what is the expression of [’ (t) in terms of U(#,0) and

aU(£,0) 5
o

(d) Show that (ﬁ "(t) — H [)\(t)]) is proportional to %ﬁt—), namely, the rate of change in
A(t).
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