NATIONAL UNIVERSITY OF SINGAPORE

PC4130 Quantum Mechanics III

(Semester I: AY 2008-09)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **FOUR** questions and comprises **THREE** printed pages including this page.
- 2. Answer all FOUR questions.
- 3. Answers to the questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.
- 5. One help sheet (A4 size, both sides) is allowed for this examination.
- 6. All four questions carry equal marks.

Question I.

Consider the time evolution of a quantum system with a time-varying Hamiltonian $\hat{H}(\lambda(t))$. The instantaneous eigenstates and eigenvalues of $\hat{H}(\lambda(t))$ are given by $|\psi_n(\lambda(t))\rangle$ and $E_n(\lambda(t))$. Suppose now $\lambda(t)$ is changing very slowly such that a time evolving state starting from $|\psi_n(\lambda(t_0))\rangle$ at $t=t_0$ remains to be an eigenstate of $\hat{H}(\lambda(t))$.

- 1. What is the dynamical phase of the time-evolving state?
- 2. Derive the expression for the geometric phase of the time-evolving state.

Question II.

Using the variational principle, estimate the energy of the first excited state associated with the harmonic potential $V(x) = cx^2$, where c > 0. You may need the following integral:

$$\int_{0}^{+\infty} \exp(-ax^{2})x^{2n}dx = \sqrt{\frac{\pi}{4a}} \left(\frac{1}{4a}\right)^{n} \frac{(2n)!}{n!}.$$

Question III.

Consider the quantum scattering by a shell potential modeled by a spherical delta function, namely, $V(r) = V_0 \delta(r - a)$, where r represents the distance from the origin.

- 1. Using the first Born approximation, calculate the differential cross section.
- 2. In the regime of high energy scattering, also estimate how the total cross section scales with the scattering energy.

Question IV.

The eigenvalues and eigenstates of a quantum system are given by E_n and $|\psi_n\rangle$, with $n=1,2,3,\cdots$. For time t<0, the system is in its ground state $|\psi_1\rangle$. For time $t\geq 0$, this system is subject to a perturbation $\hat{V}(t)=\hat{A}\exp(-t/\tau)$, where \hat{A} is a time-independent operator.

- 1. Using the first-order time-dependent perturbation theory, obtain the final probability of finding the system being in an arbitrary excited state $|\psi_n\rangle$.
- 2. Discuss also under what conditions your first-order perturbation result will hold.

END OF PAPER, JG