NATIONAL UNIVERSITY OF SINGAPORE

PC4240 Solid State Physics (II)

(Semester II: AY 2014-15)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. This assessment paper contains 3 questions and comprises 4 printed pages.
- 2. Students are required to answer all 3 questions.
- 3. Students should write the answers for each question on a new page.
- 4. This is a CLOSED BOOK examination.
- 5. One A4 single side help sheet is allowed for this examination.
- 6. A book of constants is provided.

- 1(a) Explain qualitatively why some atoms form paramagnetic and others form diamagnetic materials with reference to the electronic structure of these atoms.
- (b) Define the term ferromagnetism, antiferromagnetism and itinerant ferromagnetism.

 Write down an expression of magnetization of each magnet.
- (c) Explain similarities and dissimilarities of the behavior of ferromagnetic order and ferroelectric order.
- (d) The static dielectric constant of a NaCl crystal is 5.9, while at optical frequency, the dynamic dielectric constant is 2.34. Explain origins of the difference.
- (e) Show that the local field (E_{local}) at a point in an infinite slab of dielectric constant (ε) with a cubic lattice under the macroscopic field (E) is $E_{local} = \frac{1}{3}(\varepsilon + 2)E$. Details of derivation have to be clearly stated.
- (f) Describe the behavior of the transition between the normal and superconducting states by considering the temperature dependence of the superconducting gap energy at the Fermi level and the specific heat.
- (g) Starting from the tight binding energy expression $\varepsilon_k = -\alpha \gamma \sum_{mn} \exp(-ik \cdot \rho_m),$ find the band width of a simple cubic lattice with wavevector k along [111] direction.

[42 marks]

- 2(i) Starting from the Bohr-Sommerfeld quantum condition $\oint d\vec{r} \cdot \vec{p} = (n + \frac{1}{2})h$, show that the flux through the electron orbit (Φ_n) in r-space is quantized as $\Phi_n = (n + \frac{1}{2})(\frac{hc}{e})$, where e is the charge of the electron. [10 marks]
- (iii) Explain how the expression of S_n in (ii) can be used to measure the Fermi surface. [10 marks]

- 3 (i) Starting from relations between k vectors of Surface Plasmon Polariton(SPP) at the interface between a metal (m) and a dielectric (d) , $\frac{k_{zm}}{\varepsilon_m} + \frac{k_{zd}}{\varepsilon_d} = 0$, where the direction of propagation of the longitudinal wave is x, and the direction perpendicular to the interface is z, show that the dispersion relations of SPP are $k_x^2 = (\frac{\omega}{c})^2 \frac{\varepsilon_m \varepsilon_d}{\varepsilon_m + \varepsilon_d} \; ; \; k_{zd}^2 = (\frac{\omega}{c})^2 \frac{\varepsilon_d^2}{\varepsilon_m + \varepsilon_d} \; \text{and} \; k_{zm}^2 = (\frac{\omega}{c})^2 \frac{\varepsilon_m^2}{\varepsilon_m + \varepsilon_d} \; . \qquad [12 \text{ marks}]$
- (ii) Discuss the sign of the real values of ε_m , ε_d and their relative amplitude from the dispersion relation. [4 marks]
- (iii) Show that the SPP fields on both sides of the interface are evanescent. [6 marks]
- (iv) Write down expressions and sketch dispersion relations of (a) a photon in air (b) a bulk plasmon, and (c) a SPP . Indicate the positions of the bulk plasmon frequency ω_p and surface plasmons frequency ω_{sp} in the same graph. [10 marks]

Ongck

End of Paper