Question 1 (i)

There are N atoms, N lattice, and M interstitial states. So for n atoms in the interstitial sites,

$$
\begin{aligned}
\Omega & =\binom{N}{N-n}\binom{M}{n}=\frac{N!}{n!(N-n)!} \frac{M!}{n!(M-n)!} \\
S & =k \ln \Omega=k[\ln N!+\ln M!-2 \ln n!-\ln (N-n)!-\ln (M-n)!] \\
& =k[N \ln N+M \ln M-2 n \ln n-(N-n) \ln (N-n)-(M-n) \ln (M-n)] \\
\frac{1}{T} & =\frac{\partial S}{\partial E}=\frac{\partial n}{\partial E} \frac{\partial S}{\partial n}=\frac{k}{\epsilon}[-2 \ln n-2+\ln (N-n)+1+\ln (M-n)+1] \\
T & =\frac{\epsilon}{k} \frac{1}{\ln \frac{(N-n)(M-n)}{n^{2}}}
\end{aligned}
$$

Hint $1: \Omega$ is found through combinatoric methods. Since there are n atoms in the interstitial sites, there are $\binom{M}{n}$ ways of placing those n atoms in M interstitial sites. So after filling up the n atoms, there are $N-n$ atoms left, and they are fit into the N lattice sites. Multiply these two combinations, and you get the results.

Hint 2: Use Stirling's Formula to find the final expression of S.

Question 1 (ii)

$$
\begin{aligned}
& \frac{\epsilon}{k T}=-\ln \frac{n^{2}}{(N-n)(M-n)} \\
& e^{-\frac{\epsilon}{k T}}=\frac{n^{2}}{(N-n)(M-n)} \quad[\text { shown }]
\end{aligned}
$$

For $\epsilon \ll k T, e^{-\frac{\epsilon}{k T}} \approx 1$, so

$$
\frac{n^{2}}{(N-n)(M-n)} \approx 1 \Rightarrow n=\frac{M N}{M+N}
$$

Question 1 (iii)

If $M=N$,

$$
\frac{n^{2}}{(N-n)^{2}}=e^{-\frac{\epsilon}{k T}}
$$

At low T, $n=0$; at high T, $n=\frac{N^{2}}{2 N}=\frac{N}{2}$.

This agrees with the laws of thermodynamics, since the greatest disorder (highest entropy and temperature) should occur when $n=\frac{N}{2}$, while the lowest disorder occurs when $n=0$.

Question 2 (i)

$$
\begin{aligned}
& H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} \\
& Z=\frac{1}{h} \int_{-\infty}^{\infty} e^{-\beta\left(\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}\right)} d p d q=\frac{1}{h} \int_{-\infty}^{\infty} e^{-\frac{\beta p^{2}}{2 m}} d p \int_{-\infty}^{\infty} e^{-\frac{\beta m \omega^{2} q^{2}}{2}} d q=\frac{1}{\beta \hbar \omega} \\
& \langle E\rangle=-\frac{\partial}{\partial \beta} \ln Z=\frac{\partial}{\partial \beta}(\ln \beta \hbar \omega)=k T
\end{aligned}
$$

Hint: make use of the integral formula given.

Question 2 (ii)

$$
\begin{aligned}
& Z=\sum_{n} e^{-\beta\left(n+\frac{1}{2}\right) \hbar \omega}=e^{-\frac{\beta \hbar \omega}{2}} \sum_{n}^{\infty} e^{-\beta \hbar \omega n}=\frac{1}{2} \operatorname{csch} \frac{\beta \hbar \omega}{2} \\
& \langle E\rangle=-\frac{\partial}{\partial \beta} \ln Z=\frac{\partial}{\partial \beta}\left[\ln \left(e^{\frac{\beta \hbar \omega}{2}}-e^{-\frac{\beta \hbar \omega}{2}}\right)\right]=\frac{\hbar \omega}{2} \operatorname{coth} \frac{\beta \hbar \omega}{2}
\end{aligned}
$$

Hint: Use the sum to infinity formula for Z, and be familiar with the conversion between hyperbolic and exponential functions, as well as their differentiations.

Question 2 (iii)

For small $\frac{\beta \hbar \omega}{2}, \operatorname{coth} \frac{\beta \hbar \omega}{2} \approx \frac{2}{\beta \hbar \omega}$, thus

$$
\langle E\rangle=\frac{\hbar \omega}{2} \frac{2}{\beta \hbar \omega}=k T
$$

Which is the classical results. So we conclude that classical result is only valid at either high T, or small $\hbar \omega$ (energy level).

Question 3 (i)

$$
\begin{aligned}
& \frac{\lambda^{3} P}{k T}=g_{\frac{5}{2}}(\zeta), \quad \lambda^{3} n=g_{\frac{3}{2}}(\zeta) \\
& P V=k T \ln Z=g_{\frac{5}{2}}(\zeta) \frac{k T V}{\lambda^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \ln Z=\frac{V}{\lambda^{3}} g_{\frac{5}{2}}(\zeta) \\
& U=-\frac{\partial}{\partial \beta} \ln Z=\frac{3}{2} \frac{V}{\beta} \frac{1}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)=\frac{3}{2} P V \quad[\text { shown }]
\end{aligned}
$$

Question 3 (ii)

$$
n \lambda^{3}=g_{\frac{3}{2}}(\zeta)=\zeta+\frac{\zeta^{2}}{2^{\frac{3}{2}}}+\cdots
$$

$1^{\text {st }}$ order, $\zeta=n \lambda^{3}$.
$2^{\text {nd }}$ order, $n \lambda^{3}=\zeta+\frac{\left(n \lambda^{3}\right)^{2}}{2^{\frac{3}{2}}}$

$$
\Rightarrow \zeta=n \lambda^{3}\left(1-\frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right) \quad[\text { shown }]
$$

Hint: substitute the $1^{\text {st }}$ order term into the second term of $n \lambda^{3}=\zeta+\frac{\zeta^{2}}{2^{\frac{3}{2}}}+\cdots$ only! This kind of substitution will be the key to solve many similar statistical mechanics problems.

Question 3 (iii)

At high temperature,

$$
\begin{aligned}
& \frac{\lambda^{3} P}{k T}=\zeta+\frac{\zeta^{2}}{2^{\frac{5}{2}}}+\cdots=n \lambda^{3}\left(1-\frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right)+\left(n \lambda^{3}\right)^{2}\left(1-\frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right)^{2} \frac{1}{2^{\frac{5}{2}}}=n \lambda^{3}\left(1-\frac{n \lambda^{3}}{2^{\frac{5}{2}}}\right) \\
& U=\frac{3}{2} P V=\frac{3}{2} \frac{V k T}{\lambda^{3}}\left[n \lambda^{3}-\frac{\left(n \lambda^{3}\right)^{2}}{2^{\frac{5}{2}}}\right]=\frac{3}{2} N k T\left(1-\frac{n \lambda^{3}}{2^{\frac{5}{2}}}\right)
\end{aligned}
$$

The first term refers to the classical gas approximation, the second is the quantum correction for Bose gases.

Hint: For the first line, binomial approximation is required to get the final results.

Question 4 (i)

It is an ideal gas of N free electrons with mass m , volume V at low temperature. We also have

$$
f(\epsilon)=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{\frac{1}{2}}, \quad \mu=\epsilon_{F}\left[1-\frac{\pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right]
$$

$$
U=\int_{0}^{\infty} \epsilon n(\epsilon) f(\epsilon) d \epsilon=\int_{0}^{\infty} n(\epsilon) \frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{\frac{3}{2}} d \epsilon
$$

Using Sommerfeld expansion,

$$
G^{\prime}(\epsilon)=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{\frac{3}{2}}, \quad G(\epsilon)=\frac{V}{5 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{\frac{5}{2}}, \quad G^{\prime \prime}(\epsilon)=\frac{3 V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon^{\frac{1}{2}}
$$

Using the expression $N=\frac{2}{3} \frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \epsilon_{F}^{\frac{3}{2}}$ (you can calculate yourself), we have

$$
\begin{aligned}
U & \approx G(\mu)+\frac{\pi^{2}}{6}(k T)^{2} G^{\prime \prime}(\mu)+\cdots \\
& =\frac{V}{5 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \mu^{\frac{5}{2}}+\frac{\pi^{2}}{6}(k T)^{2} \frac{3}{4} \frac{V}{\pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{\frac{3}{2}} \mu^{\frac{1}{2}}+\cdots \\
& =\frac{3}{5} N \epsilon_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right] \quad[\text { shown }]
\end{aligned}
$$

Hint: $\mu^{\frac{1}{2}} \approx \epsilon_{F}^{\frac{1}{2}}$, while substitute $\mu^{\frac{5}{2}}$ with the expression of μ given in the question.

Question 4 (ii)

$$
\begin{aligned}
P & =\frac{2}{3} \frac{U}{V} \approx \frac{2}{5} \frac{N}{V} \epsilon_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right] \\
\Omega_{G} & =-P V \approx-\frac{2}{5} N \epsilon_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}+\cdots\right] \\
S & =\frac{U-\Omega_{G}-N \mu}{T} \\
& \approx \frac{1}{T}\left\{\frac{3}{5} N \epsilon_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}\right]+\frac{2}{5} N \epsilon_{F}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}\right]-N \epsilon_{F}\left[1-\frac{\pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}\right]\right\} \\
& =\frac{1}{2} N \pi^{2} k^{2} \frac{T}{\epsilon_{F}} \\
F & =U-T S \approx \frac{3}{5} N \epsilon_{F}\left[1-\frac{5 \pi^{2}}{12}\left(\frac{k T}{\epsilon_{F}}\right)^{2}\right]
\end{aligned}
$$

Question 4 (iii)

For P, if the $2^{\text {nd }}$ term is neglected, we have $P V=\frac{2}{5} N k T_{F}$.

For S, at very low temperature, we see that it is proportional to T , in accordance to the $3^{\text {rd }}$ Law of Thermodynamics.

