Question 1 (i)
So we have 2D, N atoms, and 2N independent harmonic oscillators.

$$
\begin{aligned}
& Z_{1}=\sum^{n} e^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)}=e^{-\frac{\beta \hbar \omega}{2}} \sum^{n} e^{-\beta \hbar \omega n}=\frac{1}{2} \operatorname{csch} \frac{\beta \hbar \omega}{2} \\
& Z_{2 N}=\left(Z_{1}\right)^{2 N}=\left(e^{\frac{\beta \hbar \omega}{2}}-e^{-\frac{\beta \hbar \omega}{2}}\right)^{-2 N} \\
& E=-\frac{\partial}{\partial \beta} \ln Z=2 N \frac{\partial}{\partial \beta}\left[\ln \left(2 \sinh \frac{\beta \hbar \omega}{2}\right)\right]=N \hbar \omega \operatorname{coth} \frac{\beta \hbar \omega}{2}
\end{aligned}
$$

Hint: be familiar with the conversions between hyperbolic and exponential functions.

Question 1 (ii)

$$
C=\frac{\partial E}{\partial T}=-N \hbar \omega \operatorname{csch}^{2}\left(\frac{\beta \hbar \omega}{2}\right)\left(-\frac{\hbar \omega}{2 k T^{2}}\right)=\frac{N \hbar^{2} \omega^{2}}{2 k T^{2}} \operatorname{csch}^{2} \frac{\beta \hbar \omega}{2}
$$

At high temperature,

$$
C \approx \frac{N \hbar^{2} \omega^{2}}{2 k T^{2}} \frac{4}{\beta^{2} \hbar^{2} \omega^{2}}=2 N k
$$

C is constant in accordance to Curie's Law.

At low temperature,

$$
C=\frac{N \hbar^{2} \omega^{2}}{2 k T^{2}} \frac{1}{\left(e^{\frac{\beta \hbar \omega}{2}}-e^{-\frac{\beta \hbar \omega}{2}}\right)^{2}} \approx \frac{N \hbar^{2} \omega^{2}}{2 k T^{2}} e^{-\beta \hbar \omega} \approx 0
$$

Hint 1: Curie's Law at high temperature includes the following 3 things: $M \propto \frac{1}{T}, \chi \propto \frac{1}{T}$ and $C \propto k$.
Hint 2: $e^{-x} \approx 0$ when x is big, and $e^{x} \approx 1+x$ when x is close to zero. The graph of $y=\frac{e^{-\frac{1}{x}}}{x^{2}}$ looks something like the following, and it gets to zero as x tends to zero:

Question 1 (iii)

$$
S=k \ln Z-\frac{U}{T}=2 N k \ln \left(2 \sinh \frac{\beta \hbar \omega}{2}\right)-\frac{N \hbar \omega}{T} \operatorname{coth} \frac{\beta \hbar \omega}{2}
$$

For low temperature,

$$
S \approx 2 N k \ln e^{\frac{\beta \hbar \omega}{2}}-\frac{N \hbar \omega}{T}=\frac{2 N k \hbar \omega}{2 k T}-\frac{N \hbar \omega}{T}=0
$$

In accordance to the $3^{\text {rd }}$ Law of Thermodynamics.

At high temperature,

$$
S \approx 2 N k \ln \beta \hbar \omega-\frac{N \hbar \omega}{T} \frac{2}{\beta \hbar \omega}=2 N k\left[\ln \left(\frac{\hbar \omega}{k T}\right)-1\right]
$$

Question 2 (i)

For $T \rightarrow 0, n_{k} \rightarrow \theta\left(\mu-\epsilon_{k}\right)$, where

$$
\begin{aligned}
& \theta\left(\mu-\epsilon_{k}\right)= \begin{cases}0, & \mu<\epsilon_{k} \\
1, & \mu>\epsilon_{k}\end{cases} \\
& N=\sum_{\epsilon<\epsilon_{k}} 1=\frac{2 A}{(2 \pi)^{2}} \pi k_{F}^{2}=\frac{A}{2 \pi} k_{F}^{2} \\
& k_{F}=\sqrt{\frac{2 \pi N}{A}} \\
& \epsilon_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(2 \pi \frac{N}{A}\right)=\frac{\pi \hbar^{2}}{m} \frac{N}{A} \\
& U=\sum_{k<k_{F}} \epsilon_{k}=\frac{2 A}{(2 \pi)^{2}} \int_{0}^{k_{F}} \frac{\hbar^{2} k^{2}}{2 m} 2 \pi k d k=\frac{A \hbar^{2} k_{F}^{4}}{8 m \pi}=\frac{1}{2} N \epsilon_{F} \quad[\text { shown] }
\end{aligned}
$$

Hint: Try thinking of $\theta\left(\mu-\epsilon_{k}\right)$ as a 2D Dirac delta function, a circle on a 2D plane with the origin as its centre. Another thing here is, k_{F} is the wave factor, not to be confused with the Boltzmann constant!

Question 2 (ii)

$$
N=\sum_{r} n_{r}=\frac{2 A}{(2 \pi)^{2}} \int \frac{2 \pi k d k}{e^{\beta(\epsilon-\mu)}+1}=\frac{m A}{\pi \hbar^{2}} \int \frac{m A}{\pi \hbar^{2}} \frac{d \epsilon}{e^{\beta(\epsilon-\mu)}+1}=\int n(\epsilon) f(\epsilon) d \epsilon
$$

So we can see that

$$
f(\epsilon)=\frac{A m}{\pi \hbar^{2}}=G^{\prime}(\epsilon), \quad G(\epsilon)=\frac{A m}{\pi \hbar^{2}} \epsilon, \quad G^{\prime \prime}(\epsilon)=0
$$

$$
\therefore N=\frac{A m}{\pi \hbar^{2}} \mu
$$

At $T=0$,

$$
N=\frac{m A}{\pi \hbar^{2}} \epsilon_{F}=\frac{m A}{\pi \hbar^{2}} k T_{F}
$$

$\therefore \mu=k T_{F}=\epsilon_{F}$, it is independent of temperature.

Question 2 (iii)

$$
\begin{aligned}
& U=\int n(\epsilon) f(\epsilon) \epsilon d \epsilon=\int n(\epsilon) G^{\prime}(\epsilon) d \epsilon \\
& G^{\prime}(\epsilon)=\frac{A m}{\pi \hbar^{2}} \epsilon, \quad G(\epsilon)=\frac{A m}{2 \pi \hbar^{2}} \epsilon^{2}, \quad G^{\prime \prime}(\epsilon)=\frac{A m}{\pi \hbar^{2}} \\
& U=\frac{A m \mu^{2}}{2 \pi \hbar^{2}}+\frac{\pi^{2}}{6}(k T)^{2} \frac{A m}{\pi \hbar^{2}}=\frac{1}{2} N \mu+\frac{N \pi^{2}}{6} \frac{(k T)^{2}}{\mu}=\frac{1}{2} N k T_{F}\left[1+\frac{\pi^{2}}{3}\left(\frac{T}{T_{F}}\right)^{2}\right] \\
& C_{v}=\frac{\partial U}{\partial T}=\frac{1}{2} N k T_{F}\left(\frac{2 \pi^{2} T}{3 T_{F}^{2}}\right)=\frac{N k \pi^{2}}{3} \frac{T}{T_{F}}
\end{aligned}
$$

Question 3 (i)

$n \lambda^{3}=e^{\mu \beta} \mp \frac{e^{2 \mu \beta}}{2^{\frac{3}{2}}}+\cdots$
$1^{\text {st }}$ order approximation, $n \lambda^{3}=e^{\mu \beta}$.
$2^{\text {nd }}$ order approximation, $n \lambda^{3}=e^{\mu \beta} \mp \frac{\left(n \lambda^{3}\right)^{2}}{2^{\frac{3}{2}}}$

$$
\begin{aligned}
& \Rightarrow e^{\mu \beta}=n \lambda^{3}\left(1 \pm \frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right) \\
& \mu=k T\left[\ln n \lambda^{3}+\ln \left(1 \pm \frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right)\right]
\end{aligned}
$$

For high temperature, λ^{3} is small, so $\ln \left(1 \pm \frac{n \lambda^{3}}{2^{\frac{3}{2}}}\right) \approx \pm \frac{n \lambda^{3}}{2^{\frac{3}{2}}}$, and

$$
\therefore \mu=k T\left[\ln n \lambda^{3} \pm \frac{n \lambda^{3}}{2^{\frac{3}{2}}}+\cdots\right] \quad[\text { shown }]
$$

Question 3 (ii)

$$
\begin{aligned}
& F=-k T \ln Z_{N}=-k T \ln \left[\frac{1}{N!}\left(\frac{V}{\lambda^{3}}\right)^{N}\right] \\
& P V=\frac{V}{\beta} \frac{\partial}{\partial V}\left(\ln Z_{N}\right)=k T V \frac{\partial}{\partial V}\left\{\ln \left[\frac{1}{N!}\left(\frac{V}{\lambda^{3}}\right)^{N}\right]\right\}=N k T \\
& G=N \mu=F+P V=k T\left[\ln N!-N \ln \left(\frac{V}{\lambda^{3}}\right)+N\right] \approx N k T\left[\ln N-\ln \left(\frac{V}{\lambda^{3}}\right)\right] \\
& \mu=k T \ln \left(\frac{N \lambda^{3}}{V}\right)=k T \ln \left(n \lambda^{3}\right) \quad[\text { shown }]
\end{aligned}
$$

Hint: Use Stirling's formula for the simplification of G.

Question 3 (iii)

The fermions follow the blue line, the bosons the red line, while classical particles follow the green line. The intersection with the green line and the T axis is T_{c}. The quantum correction is the second term of the equation for μ. The results show that the chemical potential curve for fermions is higher than classical particles, and it starts from a non-zero value of $\mu=\epsilon_{F}$. The boson curve is lower than classical and is always negative.

Question 4 (i)

For the bose gas,

$$
\frac{P \lambda^{3}}{k T}=g_{\frac{5}{2}}(\zeta), \quad \frac{N \lambda^{3}}{V}=g_{\frac{3}{2}}(\zeta)
$$

At $T>T_{c}$,

$$
U=\frac{3}{2} P V=\frac{V}{\lambda^{3}} k T g_{\frac{5}{2}}(\zeta)=\frac{3}{2} \frac{k T}{\lambda^{3}} V g_{\frac{5}{2}}(\zeta)
$$

$$
\begin{aligned}
\Omega_{G} & =-P V=-\frac{k T}{\lambda^{3}} V g_{\frac{5}{2}}(\zeta) \\
G & =N \mu=N k T \ln \zeta \\
F & =\Omega_{G}+G=-\frac{k T}{\lambda^{3}} V g_{\frac{5}{2}}(\zeta)+N k T \ln \zeta \\
S & =\frac{U}{T}-\frac{F}{T}=\frac{3}{2} \frac{k}{\lambda^{3}} V g_{\frac{5}{2}}(\zeta)+\frac{k}{\lambda^{3}} V g_{\frac{5}{2}}(\zeta)-N k \ln \zeta=\frac{5}{2} \frac{k V}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)-N k \ln \zeta \\
C_{v} & =\left(\frac{\partial U}{\partial T}\right)_{\beta \mu}=\frac{3}{2} k V \frac{\partial}{\partial T}\left[\frac{T}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)\right]=\frac{5}{2} \frac{3}{2} \frac{k V}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)+\frac{3}{2} \frac{k T V}{\lambda^{3}} \frac{\partial \zeta}{\partial T} \frac{\partial}{\partial \zeta} g_{\frac{5}{2}}(\zeta) \\
& =\frac{15}{4} \frac{V}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)-\frac{9}{4} N k \frac{g_{\frac{3}{2}}(\zeta)}{g_{\frac{1}{2}}(\zeta)} \quad[\text { shown }]
\end{aligned}
$$

Hint: to find the expression of C_{v}, use the relation $\frac{\partial \zeta}{\partial T}=-\frac{3 N \lambda^{3}}{2 T V} \frac{\zeta}{g_{\overline{1}}(\zeta)}$, which can be obtained by partial differentiating both sides of the equation $\frac{N \lambda^{3}}{V}=g_{\frac{3}{2}}(\zeta)$ with respect to T .

Question 4 (ii)

For $T<T_{c}$,

$$
\begin{aligned}
& \zeta=1, \quad g_{\frac{5}{2}}(1)=1.342, \quad g_{\frac{3}{2}}(1)=2.612, \quad g_{\frac{1}{2}}(1)=\infty \\
& U=\frac{3}{2} \frac{k T V}{\lambda^{3}}(1.342), \\
& \Omega_{G}=-\frac{1.342 k T V}{\lambda^{3}} \\
& G=0 \\
& F=\frac{1.342 k T V}{\lambda^{3}}=-\Omega_{G} \\
& S=\frac{5}{2} \frac{k V}{\lambda^{3}}(1.342) \\
& C_{v}=\frac{15}{4} \frac{V k}{\lambda^{3}}(1.342)
\end{aligned}
$$

Question 4 (iii)

Since $T>T_{c}$,

$$
C_{v}=\frac{15}{4} \frac{V}{\lambda^{3}} g_{\frac{5}{2}}(\zeta)-\frac{9}{4} N k \frac{g_{\frac{3}{2}}(\zeta)}{g_{\frac{1}{2}}(\zeta)}=\frac{15}{4} N k \frac{g_{\frac{5}{2}}(\zeta)}{g_{\frac{3}{2}}(\zeta)}-\frac{9}{4} N k \frac{g_{\frac{3}{2}}(\zeta)}{g_{\frac{1}{2}}(\zeta)}
$$

At $T \gg T_{c}$,
$e^{\frac{\mu}{k T}} \rightarrow \frac{\mu}{k T}, \quad g_{k}(\zeta) \approx \zeta \approx n \lambda^{3}$
$\frac{C_{v}}{N k} \approx \frac{15}{4}-\frac{9}{4}=\frac{3}{2}$

At $T=T_{c}, \zeta=1$,
$\frac{C_{v}}{N k}=\frac{15}{4} \frac{1.342}{2.612} \approx 1.93$

At $T=0, C_{v}=0$. So our graph look like this:

Hint: Just in case you are confused, here's a table to summarize what equations are valid at what temperatures. In simple words, the two equations are valid above $T_{c}, \zeta=1$ at $T=T_{c}$, and the equation involving n is not valid below T_{c} !

Temperature condition	The two equations should be	
$T>T_{c}$	$\frac{P \lambda^{3}}{k T}=g_{\frac{5}{2}}(\zeta)$,	$\frac{N \lambda^{3}}{V}=g_{\frac{3}{2}}(\zeta)$
$T=T_{c}$	$\frac{P \lambda^{3}}{k T}=g_{\frac{5}{2}}(1)$,	$\frac{N \lambda^{3}}{V}=g_{\frac{3}{2}}(1)$
$T<T_{c}$	$\frac{P \lambda^{3}}{k T}=g_{\frac{5}{2}}(1)$,	$\frac{N \lambda^{3}}{V}>g_{\frac{3}{2}}(1)$

Solutions provided by:
John Soo
© 2013, NUS Physics Society

