National University of Singapore

PC4241 Statistical Mechanics

(Semester I: AY2010-11, 23 November)

Time Allowed: Two Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FOUR questions and comprises FOUR printed pages.
- 2. All questions carry equal marks.
- 3. Answer any **THREE** questions.
- 4. This is a CLOSED BOOK examination.
- 5. One A4 double-sided sheet of formulae and equations is allowed.

1. Graphene, a one-atom-thick planar sheet of carbon atoms, can be considered as a system of N atoms in a two-dimensional lattice, which is equivalent to 2N independent harmonic oscillations each with vibrational energy.

$$E_n=\hbar\omega\left(n+\frac{1}{2}\right) \ , \ n=0,1,...,$$

where ω is the vibrational angular frequency.

- (i) Calculate the partition function and the energy of the system.
- (ii) Calculate the heat capacity of the system and its high- and low-temperature limits. Comment on the results.
- (iii) Calculate the entropy of the system and its high- and low-temperature limits. Comment on the result of the low-temperature limit.
- 2. It is experimentally possible to confine electrons to a two-dimensional plane. Consider a system of N free electrons, each of mass m, confined to a square of area A.
 - (i) Show that at temperature T = 0K, the Fermi energy ε_F , Fermi wavevector k_F and internal energy U of the system are given respectively by

$$\varepsilon_F = \frac{\pi \hbar^2}{m} \frac{N}{A}$$
, $k_F = \left(2\pi \frac{N}{A}\right)^{\frac{1}{2}}$, $U = \frac{1}{2} N \varepsilon_F$.

(ii) Obtain the density of state $f(\varepsilon)$ from (i) and find the expression for N using the Sommerfield expansion,

$$\int_0^\infty n(\varepsilon)G'(\varepsilon)d\varepsilon = G(\mu) + \frac{\pi^2}{6}(kT)^2 G''(\mu) \ .$$

Hence, show that at low temperatures, the chemical potential μ , is independent of temperature.

(iii) Calculate the internal energy U and heat capacity C_V of the system at low temperatures as functions of N, T and ε_F .

3. (i) The fugacity z for quantum gases can be obtained by solving the equation

$$n\lambda^3 = z \mp \frac{z^2}{2^{\frac{3}{2}}} + \frac{z^3}{3^{\frac{3}{2}}} \mp \dots,$$

where the upper sign refers to fermions and the lower sign to bosons, n is the density and λ the thermal wavelength. At high temperatures, show that the chemical potential μ is given by

$$\mu = kT \left[\ln \left(n\lambda^3 \right) \pm \frac{n\lambda^3}{2^{\frac{3}{2}}} - \dots \right] .$$

(ii) The partition function $Z_{\scriptscriptstyle N}$ for a classical gas is given by

$$Z_N = \frac{1}{N!} \left(\frac{V}{\lambda^3} \right)^N \quad .$$

Use Z_N to obtain the Helmholtz free energy and the Gibbs free energy. Hence show that $\mu = kT \ln(n\lambda^3)$.

- (iii) Sketch the graphs of chemical potential vs temperature for the quantum and classical gases. Comment on your results.
- 4. The parametric equations of state for a Bose gas are given by

$$\frac{\lambda^3 P}{kT} = g_{\frac{5}{2}}(z)$$
, $\frac{\lambda^3 N}{V} = g_{\frac{3}{2}}(z)$

where λ is the thermal wavelength, z the fugacity and the Bose function $g_k = \sum_{l=1}^{\infty} \frac{z^l}{l^k}$.

(i) Show that at temperature T higher than the Bose-Einstein condensation temperature T_c , the internal energy U, grand potential Ω_G , Gibbs free energy G, Helmholtz free energy F, entropy S and heat capacity C_V are given respectively by

$$U = \frac{3}{2} \frac{kT}{\lambda^3} V g_{\frac{5}{2}}(z) \quad ,$$

$$\Omega_G = -\frac{kT}{\lambda^3} V g_{\frac{5}{2}}(z) \quad ,$$

$$G = NkT \ln z \quad ,$$

$$F = -\frac{kT}{\lambda^3} Vg_{\frac{5}{2}}(z) + NkT \ln z \quad ,$$

$$S = \frac{5}{2} \frac{k}{\lambda^3} V g_{\frac{5}{2}}(z) - Nk \ln z \quad ,$$

$$C_{V} = \frac{15}{4} V k \frac{g_{\frac{5}{2}}(z)}{\lambda^{3}} - \frac{9}{4} N k \frac{g_{\frac{3}{2}}(z)}{g_{\frac{1}{2}}(z)} .$$

- (ii) For temperature $T < T_c$ obtain the corresponding expressions for the thermodynamic functions in (i).
- (iii) Calculate C_V/Nk for $T>>T_c$ and $T=T_c$ and find the temperature behavior of C_V near absolute zero. Sketch the graph of C_V vs T.

$$\left[g_{\frac{5}{2}}(1) = 1.342 , g_{\frac{3}{2}}(1) = 2.612\right]$$

Ng S C

---End of Paper---