Question 1 (i)
We have N non-interacting and distinguishable particles. So

$$
\begin{aligned}
& Z_{1}=1+e^{-\beta E} \\
& Z_{N}=\left(1+e^{-\beta E}\right)^{N}, \quad \ln Z_{N}=N \ln \left(1+e^{-\beta E}\right) \\
& U=-\frac{\partial}{\partial \beta}\left(\ln Z_{N}\right)=N E \frac{1}{e^{\beta E}+1}
\end{aligned}
$$

Question 1 (ii)

$$
\begin{aligned}
& \frac{U}{N E}=\frac{1}{e^{\beta E}+1} \\
& e^{\beta E}=\frac{N E}{U}-1 \\
& \frac{E}{k T}=\ln \left(\frac{N E}{U}-1\right) \\
& T=\frac{E}{k \ln \left(\frac{N E}{U}-1\right)}
\end{aligned}
$$

T is positive if $\frac{N E}{U}-1>1$, which means $U<\frac{N E}{2}$.
T is negative when $0<\frac{N E}{U}-1<1$, which means $\frac{N E}{2}<U<N E$.

As $T \rightarrow 0^{+}, U=N E e^{-\beta E} \approx 0 ;$ as $T \rightarrow 0^{-}, U=N E^{e^{\beta E}} \approx N E$.
As $T \rightarrow \infty, U=\frac{N E}{2}$.

So the graph looks like this:

Question 1 (ii)

$$
C=\frac{\partial U}{\partial T}=\frac{\partial \beta}{\partial T} \frac{\partial U}{\partial \beta}=\frac{N E}{k T^{2}} \frac{E e^{\beta E}}{\left(e^{\beta E}+1\right)^{2}}=\frac{N E^{2}}{k T^{2}} \frac{e^{\beta E}}{\left(e^{\beta E}+1\right)^{2}}
$$

At high T, β is small, so

$$
C \approx \frac{N E^{2}}{k T^{2}} \frac{1+\beta E}{(1+\beta E+1)^{2}} \approx \frac{N E^{2}}{k T^{2}} \frac{1}{4}(1+\beta E)\left(1-\frac{\beta E}{2}\right) \approx \frac{1}{4} \frac{N E^{2}}{k T^{2}} \approx 0
$$

At low T, β is big, so

$$
C=\frac{N E^{2}}{k T^{2}} e^{-\beta E} \approx 0
$$

Because the exponent blows up before the $\frac{1}{T^{2}}$ term.

Hint: In actual fact, the graph looks something like this:

Question 1 (iv)

$$
S=\frac{U}{T}+k \ln Z_{N}=\frac{N E}{T} \frac{1}{e^{\beta E}+1}+N k \ln \left(1+e^{-\beta E}\right)=N k\left[\frac{\beta E}{e^{\beta E}+1}+\ln \left(1+e^{-\beta E}\right)\right]
$$

At high temperature,

$$
S \approx N k\left[\frac{\beta E}{2}+1-\beta E\right]=N k\left(1-\frac{E}{2 k T}\right) \approx N k
$$

At low temperature,

$$
S \approx N k \beta E e^{-\beta E}=\frac{N E}{T} e^{-\frac{E}{k T}} \approx 0
$$

Question 2 (i)

$$
\begin{aligned}
& Z=V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} \\
& Z=\sum_{N} e^{-\beta(E-N \mu)}=\sum_{N} \frac{Z^{N}}{N!} \zeta^{N}=e^{Z \zeta}=\exp \left[V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta}\right] \quad[\text { shown }]
\end{aligned}
$$

Hint: make use of the power series of the exponent.

Question 2 (ii)

$$
\begin{aligned}
& \Omega_{G}=-k T \ln Z=-k T V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta}=-P V \\
& P=k T\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta}=\frac{\partial \Omega_{G}}{\partial V} \\
& N=\frac{1}{\beta} \frac{\partial}{\partial \mu}(\ln Z)=\frac{\partial}{\partial \mu}(k T \ln Z)=-\left(\frac{\partial \Omega_{G}}{\partial \mu}\right)_{\beta, V}=V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta} \\
& \therefore P=k T\left(\frac{N}{V}\right) \Rightarrow P V=N k T
\end{aligned}
$$

Question 2 (iii)

$$
\begin{aligned}
& (\Delta N)^{2}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2} \\
& \begin{aligned}
&\left\langle N^{2}\right\rangle=\frac{\sum_{s} N^{2} e^{-\beta E_{s}+N_{s} \mu \beta}}{Z}=\frac{1}{z} \frac{\partial^{2}}{\partial \mu^{2}}\left(\sum_{s} e^{-\beta E_{s}+N_{s} \mu \beta}\right)=\frac{1}{z \beta^{2}} \frac{\partial^{2} Z}{\partial \mu^{2}} \\
&=\frac{1}{z} \frac{1}{\beta^{2}} \frac{\partial}{\partial \mu}(\langle N\rangle \beta Z)=\langle N\rangle \frac{1}{\beta Z} \frac{\partial Z}{\partial \mu}+\frac{1}{\beta}\left(\frac{\partial\langle N\rangle}{\partial \mu}\right)_{\beta, x}=\langle N\rangle^{2}+k T\left(\frac{\partial\langle N\rangle}{\partial \mu}\right)_{\beta, x} \\
& \therefore(\Delta N)^{2}=k T\left(\frac{\partial\langle N\rangle}{\partial \mu}\right)_{\beta, x}
\end{aligned}
\end{aligned}
$$

Question 2 (iv)

$$
\langle N\rangle=V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta}
$$

$$
\begin{aligned}
& (\Delta N)^{2}=k T\left(\frac{\partial\langle N\rangle}{\partial \mu}\right)_{\beta, x}=V\left(\frac{2 \pi m}{h^{2} \beta}\right)^{\frac{3}{2}} e^{\mu \beta}=\langle N\rangle \\
& \frac{\Delta N}{\langle N\rangle}=\frac{\sqrt{\langle N\rangle}}{\langle N\rangle}=\frac{1}{\sqrt{\langle N\rangle}}
\end{aligned}
$$

This follows the Poisson distribution. So the fluctuation in particle number is negligible if the system is large.

Question 3 (i)

$$
\begin{aligned}
& \frac{\lambda^{3} P}{k T}=f_{\frac{5}{2}}(\zeta), \quad \frac{\lambda^{3} N}{V}=f_{\frac{3}{2}}(\zeta) \\
& P V=k T \ln Z \Rightarrow \ln Z=\frac{V}{\lambda^{3}} f_{\frac{5}{2}}(\zeta) \\
& U=-\frac{\partial}{\partial \beta}\left[\frac{V}{\lambda^{3}} f_{\frac{5}{2}}(\zeta)\right]=\frac{3}{2 \beta} \frac{V}{\lambda^{3}} f_{\frac{5}{2}}(\zeta)=\frac{3}{2} P V \quad \text { [shown] }
\end{aligned}
$$

Question 3 (ii)

$$
f_{\frac{3}{2}}(\zeta)=\frac{\lambda^{3} N}{V}=\zeta-\frac{\zeta^{2}}{2^{\frac{3}{2}}}-\cdots
$$

$1^{\text {st }}$ order,

$$
\frac{\lambda^{3} N}{V}=\zeta
$$

$2^{\text {nd }}$ order,

$$
\begin{aligned}
& \frac{\lambda^{3} N}{V}=\zeta-\frac{1}{2^{\frac{3}{2}}}\left(\frac{\lambda^{3} N}{V}\right)^{2} \\
& e^{\mu \beta}=\frac{\lambda^{3} N}{V}\left[1+\frac{1}{2^{\frac{3}{2}}}\left(\frac{\lambda^{3} N}{V}\right)\right] \\
& \mu \beta=\ln \left(\frac{N \lambda^{3}}{V}\right)+\ln \left[1+\frac{1}{2^{\frac{3}{2}}}\left(\frac{\lambda^{3} N}{V}\right)\right] \\
& \mu \approx k T\left[\ln \left(\frac{N \lambda^{3}}{V}\right)+\frac{1}{2^{\frac{3}{2}}}\left(\frac{\lambda^{3} N}{V}\right)\right] \quad[\text { shown }]
\end{aligned}
$$

Question 3 (iii)

$$
\frac{N \lambda^{3}}{V} \approx \frac{4}{3 \sqrt{\pi}}\left[(\ln \zeta)^{\frac{3}{2}}+\frac{\pi^{2}}{8}(\ln \zeta)^{-\frac{1}{2}}\right]
$$

$1^{\text {st }}$ order,

$$
\left(\frac{3 \sqrt{\pi} N \lambda^{3}}{4 V}\right)^{\frac{2}{3}}=\ln \zeta=\frac{\mu}{k T} \approx \frac{\varepsilon_{F}}{k T}=\frac{T_{F}}{T}
$$

$2^{\text {nd }}$ order,

$$
\begin{aligned}
& \frac{N \lambda^{3}}{V} \approx \frac{4}{3 \sqrt{\pi}}\left[(\ln \zeta)^{\frac{3}{2}}+\frac{\pi^{2}}{8}\left(\frac{4 V}{3 \sqrt{\pi} N \lambda^{3}}\right)^{\frac{1}{2}}\right] \\
& \left(\frac{T_{F}}{T}\right)^{\frac{3}{2}}=(\ln \zeta)^{\frac{3}{2}}+\frac{\pi^{2}}{8}\left(\frac{T}{T_{F}}\right)^{\frac{1}{2}} \\
& (\ln \zeta)^{\frac{3}{2}}=\left(\frac{T_{F}}{T}\right)^{\frac{3}{2}}\left[1-\frac{\pi^{2}}{8}\left(\frac{T_{F}}{T}\right)^{2}\right] \\
& \ln \zeta=\frac{T_{F}}{T}\left[1-\frac{\pi^{2}}{8}\left(\frac{T_{F}}{T}\right)^{2}\right]^{\frac{2}{3}} \approx \frac{T_{F}}{T}\left[1-\frac{\pi^{2}}{12}\left(\frac{T_{F}}{T}\right)^{2}\right] \\
& \therefore \mu=k T_{F}\left[1-\frac{\pi^{2}}{12}\left(\frac{T_{F}}{T}\right)^{2}\right] \quad[\text { shown }]
\end{aligned}
$$

Question 3 (iv)

The blue line is for fermions and the green line is for classical particles. The line for fermions does not start from $\mu=0$, and it is always higher than the classical results.

Question 4 (i)
$\mathcal{H}=\frac{1}{2 m}\left(\vec{p}+\frac{e}{c} \vec{A}\right)^{2}=\frac{1}{2 m}\left(p^{2}+\frac{2 e}{c} \vec{p} \cdot \vec{A}+\frac{e^{2}}{c^{2}} A^{2}\right)$
$\mathcal{H} \psi=E \psi$
$\frac{1}{2 m}\left(p^{2}+\frac{2 e}{c} \vec{p} \cdot \vec{A}+\frac{e^{2}}{c^{2}} A^{2}\right) \psi=E \psi$
$\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+\frac{2 e}{c} p_{y} H x+\frac{e^{2}}{c^{2}} H^{2} x^{2}+p_{z}^{2}\right) \psi=E \psi$
$\frac{1}{2 m}\left[p_{x}^{2}+\frac{e^{2} H^{2}}{c^{2}}\left(x+\frac{p_{y} c}{H e}\right)^{2}+p_{z}^{2}\right] \psi=E \psi$
$\left[\frac{p_{x}^{2}}{2 m}+\frac{e^{2} H^{2}}{2 m c^{2}}\left(x+\frac{p_{y} c}{e H}\right)^{2}\right] \psi=\left(E-\frac{p_{z}^{2}}{2 m}\right) \psi$

It is like a simple harmonic oscillator, so we have

$$
\begin{aligned}
& E-\frac{p_{Z}^{2}}{2 m}=\hbar \frac{e H}{m c}\left(j+\frac{1}{2}\right) \\
& E=\frac{p_{Z}^{2}}{2 m}+\hbar \omega_{0}\left(j+\frac{1}{2}\right) \quad[\text { shown }]
\end{aligned}
$$

The energy is independent of k_{y}. For each j , there's a degeneracy equal to the allowed values of k_{y}. Consider $k_{y}=\frac{p_{y}}{\hbar}=\frac{2 \pi n_{y}}{L} . x_{0}=\frac{\hbar k_{y} c}{e H}$ must lie inside the volume L^{3}, so

$$
\begin{aligned}
& 0<x_{0}<L \\
& 0<\frac{\hbar c}{e H} k_{y}<L \\
& 0<\frac{\hbar c}{e H} \frac{2 \pi n_{y}}{L}<L \\
& 0<\frac{h c n_{y}}{e H}<L^{2}
\end{aligned}
$$

\therefore the degeneracy, $g=\frac{e H}{h c} L^{2}$

Question 4 (ii)

$$
\begin{aligned}
& Z=\prod_{\gamma}\left(1+\zeta e^{\beta E_{\lambda}}\right) \\
& \ln Z=\sum_{\alpha=1}^{g} \sum_{j=0}^{\infty} \sum_{p_{z}} \ln \left(1+\zeta e^{-\beta E}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 g \sum_{j=0}^{\infty} \frac{L}{h} \int_{0}^{\infty} d p_{z} \ln \left[1+\zeta e^{-\beta E\left(p_{z}, j\right)}\right] \\
& =\frac{2 g L}{h} \sum_{j=0}^{\infty} \int_{0}^{\infty} d p_{z} \ln \left[1+\zeta e^{-\beta E\left(p_{z}, j\right)}\right] \quad[\text { shown }]
\end{aligned}
$$

Hint: in this question, $\gamma=\left(p_{z}, j, \alpha\right)$ and $\alpha=1,2, \ldots, g$.

Question 4 (iii)

At high temperature, β is small,

$$
\begin{aligned}
\ln Z & =\frac{2 g L}{h} \sum_{j=0}^{\infty} \int_{0}^{\infty} d p_{z} \zeta e^{-\beta E\left(p_{z}, j\right)}=\frac{2 g L}{h} \sum_{j=0}^{\infty} \int_{0}^{\infty} d p_{z} e^{-\beta\left[N \mu-\frac{p_{z}^{2}}{2 m}-\hbar \omega_{0}\left(j+\frac{1}{2}\right)\right]} \\
= & \frac{2 g L}{h} \zeta \int_{0}^{\infty} e^{-\beta \frac{p_{z}^{2}}{2 m}} d p_{z} \sum_{j=0}^{\infty} e^{\beta \hbar \omega_{0}\left(j+\frac{1}{2}\right)} \\
= & \frac{2 g L}{2 h} \zeta \sqrt{\frac{2 \pi m}{\beta}} e^{-\frac{\beta \hbar \omega_{0}}{2}} \frac{1}{1-e^{-\beta \hbar \omega_{0}}} \\
= & \frac{\zeta g L}{\lambda} \frac{e^{-x}}{1-e^{-2 x}}[\text { shown }] \\
\ln Z & =\frac{g L \zeta}{\lambda} \frac{1}{e^{x}-e^{-x}} \\
& \approx \frac{g L \zeta}{\lambda} \frac{\left.1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}-1+x-\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)}{(1+} \\
& =\frac{g L \zeta}{\lambda} \frac{1}{\beta \hbar \omega_{0}}\left[1+\frac{1}{6}\left(\frac{\beta \hbar \omega_{0}}{2}\right)^{2}\right]^{-1} \approx \frac{g L \zeta}{\lambda} \frac{1}{\beta \hbar \omega_{0}}\left[1-\frac{\left(\beta \hbar \omega_{0}\right)^{2}}{24}\right] \\
& =\frac{2 \pi L^{3} \zeta m}{h^{2} \beta \lambda}\left[1-\frac{1}{24}\left(\frac{\hbar \omega_{0}}{k T}\right)^{2}\right]=\frac{\zeta L^{3}}{\lambda^{3}}\left[1-\frac{1}{24}\left(\frac{\hbar \omega_{0}}{k T}\right)^{2}\right] \\
& =N\left[1-\frac{1}{24}\left(\frac{\hbar \omega_{0}}{k T}\right)^{2}\right] \quad[\text { shown }]
\end{aligned}
$$

Hint: use the formula of sum to infinity for the geometric series. Also, remember that $\frac{N}{L^{3}}=\frac{\zeta}{\lambda^{3}}$.

Question 4 (iv)

$$
M=\frac{1}{\beta} \frac{\partial}{\partial H}(\ln Z)=k T \frac{\partial \omega_{0}}{\partial H} \frac{\partial}{\partial \omega_{0}}\left\{N\left[1-\frac{1}{24}\left(\frac{\hbar \omega_{0}}{k T}\right)^{2}\right]\right\}
$$

$$
=-\frac{N}{k T} \frac{1}{12} \frac{e^{2} \hbar^{2}}{m^{2} c^{2}} H=-\frac{N}{3 k T} \mu_{0}^{2} H \quad[\text { shown }]
$$

We see that $M \propto \frac{1}{T}$, this is in accordance to Curie's Law.

Solutions provided by:
John Soo
© 2013, NUS Physics Society

Harry Potter eats cottage cheese and then marries his cousin on page 236!

Sorry, that spoiler would only upset me if I had any intention of reading that book.

I only read science books,
 you see

According to the second law of thermodynamics the universe will consistently lose free energy through inceasing entropy until eventually the universe experiences heat-death!

NOOOOOO!
You spoiled the ending!

