NATIONAL UNIVERSITY OF SINGAPORE

PC4242: ELECTRODYNAMICS

(Semester II: AY 2017-18)

Time allowed: 2 hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your student number only. Do not write your name.
- 2. This assessment paper contains **TWO** questions and comprises **THREE** printed pages.
- 3. Students are required to answer ALL questions.
- 4. Students should write the answers for each question on a new page.
- 5. This is a **CLOSED BOOK** examination.
- 6. Some useful formulas are provided on Page 2.
- 7. The use of electronic equipment of any kind is not permitted.

Formulas

1:	: A point charge e undergoes a simple harmonic motion,	
$\mathbf{R}(t) = L\sin(\omega t)\mathbf{e}_z.$		
	(a)	Write down the charge density $\rho(\mathbf{x},t)$ and the current density $\mathbf{J}(\mathbf{x},t)$.
		[5 marks]
	(b)	Calculate the electric dipole moment of the system.
	(c)	[5 marks] Calculate the magnetic dipole moment of the system.
	(0)	[5 marks]
	(d)	Calculate the electric quadrupole moment of the system.
		[5 marks]
	(e)	Calculate the radiating power distribution $\frac{dP(t)}{d\Omega}$.
	(0)	[10 marks]
	(f)	Calculate the radiating power distribution averaging over one period $\langle \frac{dP}{d\Omega} \rangle_t$.
	(g)	[5 marks] Calculate the total radiating power averaging over one period.
	(6)	[5 marks]
2:	On 31 January 2018, people in Singapore observed a so-called "Super Blue Blood Moon." Here, a "super moon" means that the full moon is near to its closest point to the earth. A "blue moon" refers to the second full moon in one calendar month. What is the physical mechanism leading to the term "blood moon?" Use a simple model to derive the formulas needed.	
		[20 marks]
		$[\mathbf{WQh}]$
····· End of Paper ····		