NATIONAL UNIVERSITY OF SINGAPORE

PC4243: Atomic & Molecular Physics II

(Semester 2: AY 2013-14)

Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This exam paper contains FOUR questions and comprises SIX printed pages.
- 2. You have to answer **THREE** out of the four questions.
- 3. Non-programmable calculators are permitted.
- 4. This is a **CLOSED BOOK** examination but **ONE** A4 sheet of hand written notes is permitted.
- 5. Please use only the supplied answer books, and don't mix answers to different problems on the same sheet.
- 6. There is a table of Clebsch-Gordan coefficients attached.

1: Atomic Structure

- (a) Explain the difference between LS and jj coupling in describing the level structure of multi-electron atoms.
- (b) The following table gives the electronic configurations and energies (in $\rm cm^{-1}$) for excited states of $\rm Lu^+$ (relative to the 6s² ground state).

Config.	Energy
6s5d	11796.24
	12435.32
	14199.08
	17332.58
6s6p	27264.40
	28503.16
	32453.26
	38223.49

- (i) Suggest, with reasons, further quantum numbers to identify these levels.
- (ii) Draw an energy level diagram showing the allowed dipole transitions, within the LS coupling regime.
- (iii) Explain why spin forbidden transitions appear in the spectra of some atoms. For the Lu⁺ level structure given above, give a list of the possible spin forbidden transitions that may appear. Explain your reasoning.

2: Absorption Spectroscopy

The figure shows two transitions of interest for 87 Rb and their associated resonant wavelengths. The Einstein A coefficients for the decays $5\,^2\mathrm{P}_{3/2} \to 5\,^2\mathrm{S}_{1/2}$ and $4\,^2\mathrm{D}_{5/2} \to 5\,^2\mathrm{P}_{3/2}$ are $2\pi \times 6.0\,\mathrm{MHz}$ and $2\pi \times 2.0\,\mathrm{MHz}$ respectively. Absorption spectroscopy of the transitions is performed by passing co-propagating and co-linear beams, one at 780.24 nm and one at 1529.41 nm, through a room temperature (300 K) vapour of 87 Rb. It what follows assume both beams are σ^+ polarised and ignore any hyperfine structure.

- (a) Derive an expression for the absorption coefficient of the 780.24 nm laser as a function of its detuning, Δ_1 , from the $5\,^2\mathrm{S}_{1/2}$ to $5\,^2\mathrm{P}_{3/2}$ resonance, the density of atoms n, and the resonant absorption cross-section σ_0 . You may assume the laser intensity is much less than the saturation intensity of the transition. Justify any assumptions you make.
- (b) Consider the case in which the detuning, Δ_1 , is fixed at a value giving non-negligible absorption of the 780.24 nm laser light. Estimate the width and position of the absorption spectrum for the 1529.41nm laser as a function of its detuning, Δ_2 from the $5\,^2\mathrm{P}_{3/2}$ to $4\,^2\mathrm{D}_{5/2}$ transition. A detailed calculation is not needed but your reasoning should be clearly explained.
- (c) The 4 2 D_{5/2} upper state can be probed directly via two photon spectroscopy with a laser at 1033.32 nm. *Briefly* explain the principle of two-photon spectroscopy explaining how Doppler broadening is eliminated in this approach. List factors that may contribute to the broadening and/or shifting of the resonant frequency when implementing this technique.

— Please turn over —

3: Hyperfine interaction and Magnetic fields

(a) The hyperfine structure the $2S_{1/2}$ ground state of an atom is described by the perturbation

$$H_{\rm hfs} = \frac{2}{3} \frac{\omega_0}{\hbar} \mathbf{I} \cdot \mathbf{J}.$$

Show that the states

$$|F,m_F\rangle = |l,s,j,I,F,m_F\rangle$$

are eigenstates of the perturbation where $\mathbf{F} = \mathbf{J} + \mathbf{I}$. Taking I = 1, show that the hyperfine splitting is given by $\hbar\omega_0$.

(b) In a magnetic field, the Zeeman interaction is described by the perturbation

$$H_Z = \frac{\mu_B}{\hbar} (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B}$$

where we have neglected the small contribution from the nuclear moment and taken $g_s = 2$. Determine the effect of a static B-field $\mathbf{B} = B_0 \hat{\mathbf{z}}$ in the limit that $\mu_B B_0 \ll \hbar \omega_0$.

(c) In addition to the field given in (b), a time dependent field

$$\mathbf{B} = B_{rf}(\cos(\omega t)\hat{\mathbf{x}} + \sin(\omega t)\hat{\mathbf{y}})$$

is used to invoke transitions between hyperfine states. For an atom prepared in the state $|F=1/2,m_F=-1/2\rangle$, determine all possible transitions this field can produce. For each transition, stipulate the states involved, and the resonant frequency ω . You may assume $\omega_0, B_0 > 0$.

4: Raman transitions and AC Stark shifts

The figure shows the energy level diagram for the $6^2S_{1/2}$, $6^2P_{1/2}$, and $5^2D_{3/2}$ levels of $^{138}Ba^+$. The $6^2P_{1/2}$ and $5^2D_{3/2}$ levels are at 20261.561 cm⁻¹ and 4873.852 cm⁻¹ respectively from the $6^2S_{1/2}$ ground state. The decay rates from $6^2P_{1/2}$ to $6^2S_{1/2}$ and from $6^2P_{1/2}$ to $5^2D_{3/2}$ are $2\pi \times 15.427$ MHz and $2\pi \times 5.276$ MHz respectively. A two photon Raman transition is used to transfer population from $6^2S_{1/2}$ to $5^2D_{3/2}$ as indicated. The intensity of each laser field is $10\,\mathrm{MWm}^{-2}$ and the detuning $\Delta = 2\pi \times 500\,\mathrm{GHz}$.

- (a) Assuming the beams are co-propagating, suggest polarisations for each beam to transfer population from $|^2S_{1/2}, m_J = 1/2\rangle$ to $|^2D_{3/2}, m_J = 3/2\rangle$. Explain your choice.
- (b) Calculate the Rabi rate (in MHz) of the two photon transition for the configuration you gave in (a).
- (c) Calculate the induced AC Stark shifts (in MHz) of $|^2S_{1/2}, m_J = 1/2\rangle$ and $|^2D_{3/2}, m_J = 3/2\rangle$ due to the driving fields. Justify any assumptions you make.
- (d) Will the configuration under consideration give any coupling to the motion of the ion? Explain.

Note: You may find the following equations useful

$$I_0 = \frac{1}{2} \epsilon_0 c E_0^2, \qquad A_{ij} = \frac{\omega_{ij}^3 \, \mu_{ij}^2}{3\pi \epsilon_0 \hbar c^3}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F/m}, \quad c = 2.9979 \times 10^8 \, \mathrm{m/s}, \quad \hbar = 1.055 \times 10^{-34} \, \mathrm{Js}$$
 [MDB]
$$- \text{End of paper} -$$

36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

Figure 36.1: The sign convention is that of Wigner (*Group Theory*, Academic Press, New York, 1959), also used by Condon and Shortley (*The Theory of Atomic Spectra*, Cambridge Univ. Press, New York, 1953), Rose (*Elementary Theory of Angular Momentum*, Wiley, New York, 1957), and Cohen (*Tables of the Clebsch-Gordan Coefficients*, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).