Question 1 (a)

Let the momenta of the two photons be \vec{p}_{1} and \vec{p}_{2}. For zero-mass photons, $E_{1}=\left|\vec{p}_{1}\right| c$ and $E_{1}=\left|\vec{p}_{2}\right| c$.
$\vec{p}_{1} \cdot \vec{p}_{2}=\left|\vec{p}_{1}\right|\left|\vec{p}_{2}\right| \cos \theta=\frac{E_{1} E_{2} \cos \theta}{c^{2}}$
Total 4-momentum of the photon pair $=\left(\frac{E_{1}+E_{2}}{c}, \vec{p}_{1}+\vec{p}_{2}\right)$
Invariant mass of final state is
$M^{2} c^{2}=\frac{\left(E_{1}+E_{2}\right)^{2}}{c^{2}}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}=\frac{2 E_{1} E_{2}(1-\cos \theta)}{c^{2}}$
$M^{2}=\frac{4 E_{1} E_{2}}{c^{4}} \sin ^{2} \frac{\theta}{2}$

Question 1 (b)

Conservation of energy: $E=E_{1}+E_{2}$. Let
$f(\theta)=\sin ^{2} \frac{\theta}{2}=\frac{m^{2} c^{4}}{4 E_{1}\left(E-E_{1}\right)}$
Treat E_{1} as variable and minimize f. Easy to show that f has a minimum at $E_{1}=\frac{E}{2}$.
Hence $\sin \frac{\theta_{\min }}{2}=\frac{m c^{2}}{E}$
But $\sin \frac{\theta}{2} \geq \frac{m c^{2}}{E} \Rightarrow m c^{2} \leq E \sin \frac{\theta}{2}$.
With $E=10 \mathrm{GeV}$ and $\theta=2^{\circ}, m c^{2}<174.5 \mathrm{MeV}$.
Hence the particle can only be a π^{0} meson, and cannot be a η meson.

Question 1 (c)

Question 1 (d)

i) $e^{+} e^{-} \rightarrow \gamma \gamma($ para-positranium, $Q=0)$
ii) $e^{+} e^{-} \rightarrow \gamma \gamma \gamma$ (ortho-positichiun, $\rho=1$)

Question 2 (a)

So $u^{(1)}=N\left(\begin{array}{c}1 \\ 0 \\ \frac{c p_{z}}{E+m c^{2}} \\ \frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}\end{array}\right) \& u^{(2)}=N\left(\begin{array}{c}0 \\ 1 \\ \frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\ \frac{-c p_{z}}{E+m c^{2}}\end{array}\right)$
are solutions, N some constant. Need to find solutions which are eigenspinors of $\frac{\Sigma \cdot \vec{p}}{|\vec{p}|^{\prime}}$ These are $u^{(+)}$and $u^{(-)}$. Let $u^{(\pm)}=M\left(a u^{(1)}+b u^{(2)}\right), M$ some constant. Then we require that:
$\frac{\Sigma \cdot \vec{p}}{|\vec{p}|} u^{(\pm)}= \pm u^{(\pm)}$, to find $a \& b$. Now
$\left.\frac{\Sigma \cdot \vec{p}}{|\vec{p}|}=\frac{1}{|\vec{p}|}\left(\begin{array}{cc}\vec{\sigma} \cdot \vec{p} & \overrightarrow{0} \\ \overrightarrow{0} & \vec{\sigma} \cdot \vec{p}\end{array}\right)=\frac{1}{|\vec{p}|}\left(\begin{array}{cccc}p_{z} & p_{x}-i p_{y} & & \overrightarrow{0} \\ p_{x}+i p_{y} & -p_{z} & & \\ \overrightarrow{0} & & p_{z} & p_{x}-i p_{y} \\ & & & p_{x}+i p_{y}\end{array}\right)-p_{z}\right)$ So
$\frac{\Sigma \cdot \vec{p}}{|\vec{p}|} u^{(1)}=\frac{N}{|\vec{p}|}\left(\begin{array}{c}p_{z} \\ p_{x}+i p_{y} \\ \frac{c|\vec{p}|^{2}}{E+m c^{2}} \\ 0\end{array}\right)$
$\frac{\Sigma \cdot \vec{p}}{|\vec{p}|} u^{(2)}=\frac{N}{|\vec{p}|}\left(\begin{array}{c}p_{x}-i p_{y} \\ -p_{z} \\ 0 \\ \frac{c|\vec{p}|^{2}}{E+m c^{2}}\end{array}\right)$

Recap: We need
$\frac{\Sigma \cdot \vec{p}}{|\vec{p}|}\left(a u^{(1)}+b u^{(2)}\right)= \pm\left(a u^{(1)}+b u^{(2)}\right)$

$$
\left.\begin{array}{l}
\left(\begin{array}{c}
a \frac{N}{|\vec{p}|}\left(\begin{array}{c}
p_{z} \\
p_{x}+i p_{y} \\
\frac{c|\vec{p}|^{2}}{E+m c^{2}} \\
0
\end{array}\right)+b \frac{N}{|\vec{p}|}\left(\begin{array}{c}
p_{x}-i p_{y} \\
-p_{z} \\
0 \\
\frac{c|\vec{p}|^{2}}{E+m c^{2}}
\end{array}\right)
\end{array}\right)= \pm\left(a N\left(\begin{array}{c}
1 \\
0 \\
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}
\end{array}\right)+b N\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
\frac{-c p_{z}}{E+m c^{2}}
\end{array}\right)\right.
\end{array}\right), \begin{gathered}
a \\
\left(\begin{array}{c}
\frac{1}{|\vec{p}|}\left[a p_{z}+b\left(p_{x}-i p_{y}\right)\right] \\
\frac{1}{|\vec{p}|}\left[a\left(p_{x}+i p_{y}\right)-b p_{z}\right] \\
\frac{a c|\vec{p}|}{E+m c^{2}} \\
\frac{b c|\vec{p}|}{E+m c^{2}}
\end{array}\right)= \pm\left(\begin{array}{c}
a c p_{z}+b c\left(p_{x}-i p_{y}\right) \\
E+m c^{2} \\
\frac{a c\left(p_{x}+i p_{y}\right)-b c p_{z}}{E+m c^{2}}
\end{array}\right) \\
\Rightarrow b\left(p_{x}-i p_{y}\right)=a\left(\pm|\vec{p}|-p_{z}\right) \& a\left(p_{x}+i p_{y}\right)=b\left(\pm|\vec{p}|+p_{z}\right)
\end{gathered}
$$

If we choose $a= \pm|\vec{p}|+p_{z}$, then $b=p_{x}+i p_{y}$! So
$u^{(\pm)}=M\left(\begin{array}{c} \pm|\vec{p}|+p_{z} \\ p_{x}+i p_{y} \\ \frac{c|\vec{p}|}{E+m c^{2}}\left(|\vec{p}| \pm p_{z}\right) \\ \pm \frac{c|\vec{p}|}{E+m c^{2}}\left(p_{x}+i p_{y}\right)\end{array}\right)$
Now $u^{(\pm)^{\dagger}} u^{(\pm)}=|M|^{2}\left[\left(\pm|\vec{p}|+p_{z}\right)^{2}+p_{x}^{2}+p_{y}^{2}\right]\left[1+\frac{c^{2}|\vec{p}|^{2}}{\left(E+m c^{2}\right)^{2}}\right]=\frac{2 E}{c}$
$\Rightarrow|M|=\sqrt{\frac{E+m c^{2}}{2|\vec{p}| c\left(|\vec{p}| \pm p_{z}\right)}}$
$\therefore u^{(\pm)}=\sqrt{\frac{E+m c^{2}}{2|\vec{p}| c\left(|\vec{p}| \pm p_{z}\right)}}\left(\begin{array}{c} \pm|\vec{p}|+p_{z} \\ p_{x}+i p_{y} \\ \frac{c|\vec{p}|}{E+m c^{2}}\left(|\vec{p}| \pm p_{z}\right) \\ \pm \frac{c|\vec{p}|}{E+m c^{2}}\left(p_{x}+i p_{y}\right)\end{array}\right)$

Question 2 (b) (i)
$\gamma^{\mu} \gamma^{\nu}\left(1-\gamma^{s}\right) \gamma^{N}\left(1+\gamma^{5}\right) \gamma_{N}$
$=\gamma^{\mu} \gamma^{v}\left(1-\gamma^{5}\right)^{2} \gamma^{\lambda} \gamma_{\lambda}$
$=2(4) \gamma^{\mu} \gamma^{v}\left(1-\gamma^{5}\right)=8 \gamma^{\nu} \gamma^{v}\left(1-\gamma^{5}\right)$

Question 2 (b) (ii)

Question 2 (b) (iii)

To prove that $\gamma_{\mu} \gamma^{\nu} \gamma^{\lambda} \gamma^{\sigma} \gamma^{\mu}=-2 \gamma^{\sigma} \gamma^{\lambda} \gamma^{\nu}$.

$$
\begin{aligned}
\gamma_{\mu} \gamma^{v} \gamma^{\lambda} \gamma^{\sigma} \gamma^{\mu} & =\gamma_{\mu} \gamma^{v} \gamma^{\lambda}\left(2 g^{\sigma \mu}-\gamma^{\mu} \gamma^{\sigma}\right) \\
& =2 \gamma^{\sigma} \gamma^{v} \gamma^{\lambda}-\gamma_{\mu} \gamma^{\nu}\left(\gamma^{\mu} \gamma^{\lambda}-2 g^{\mu \lambda}\right) \gamma^{\sigma} \\
& =2 \gamma^{\sigma} \gamma^{v} \gamma^{\lambda}+2 \gamma^{\lambda} \gamma^{v} \gamma^{\sigma}+\gamma_{\mu}\left(-\gamma^{\mu} \gamma^{v}+2 g^{\mu \nu}\right) \gamma^{\lambda} \gamma^{\sigma} \\
& =2 \gamma^{\sigma} \gamma^{v} \gamma^{\lambda}+2 \gamma^{\lambda} \gamma^{v} \gamma^{\sigma}-4 \gamma^{v} \gamma^{\lambda} \gamma^{\sigma}+2 \gamma^{v} \gamma^{\lambda} \gamma^{\sigma} \\
& =2 \gamma^{\sigma} \gamma^{v} \gamma^{\lambda}-2 \gamma^{\sigma} g^{\lambda \nu} \\
& =2 \gamma^{\sigma}\left(\gamma^{v} \gamma^{\lambda}-g^{\lambda \nu}\right) \\
& =-2 \gamma^{\sigma} \gamma^{\lambda} \gamma^{v}
\end{aligned}
$$

Question 3 (a) (i)
$\left|\frac{3}{2} \frac{3}{2}\right\rangle$ can only come from $|11\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle$

There are hence only two decay modes:
(a) $\Delta^{++} \rightarrow \Sigma^{+}+K^{+}$
(b) $\Delta^{++} \rightarrow p+\pi^{+}$

Question 3 (a) (ii)
$\Delta^{-}=\left|\frac{3}{2},-\frac{3}{2}\right\rangle=|1,-1\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$
The 2 decay modes:
$\Delta^{-} \rightarrow \pi^{-}+n$
$\Delta^{-} \rightarrow \Sigma^{-}+K^{0}$

Question 3 (b)
$|10\rangle|10\rangle=\sqrt{\frac{2}{3}}|20\rangle-\sqrt{\frac{1}{3}}|00\rangle=\pi^{2} \pi^{0}$
$|1-1>| 1-1\rangle=\sqrt{\frac{1}{6}}|20\rangle+\sqrt{\frac{1}{2}}|10\rangle+\sqrt{\frac{1}{3}}|00\rangle$
Rate $\binom{f \rightarrow \pi^{0} \pi^{0}}{-\rightarrow \pi^{+} \pi^{-}}=\left(\sqrt{\frac{1}{3}}\right)^{2} /\left(\sqrt{\frac{T}{3}}\right)^{2}=1$

Question 3 (c)

The satiating cross section for $e^{+} e^{-}$into hadrons is $\sigma=\frac{\pi}{3}\left(\frac{\hbar Q C \alpha}{E}\right)^{2}$, compared + the
Scattering of $e^{+} e^{-}$to $i^{+} \mu-$-the ratio of the scattering rate is $\frac{2}{3}$, when tee existence of colour is taiconibs account, the theoretical rate is multiplied by a factor of 3 aid the resiting rate is 2 which watches experqmental results

The wavefunction of Δ^{+t} is symmetrical but since Δ^{t+} is a fermi, it's wave functen has to be antisymmetric with the inclusion of colours warefunction te Δ^{H} wavefunction becomes anti-symmetric.

Question 3 (d)

The intrinsic parity of neutrino is -1 . Neutrino is an eigenstates of parity.

Question 3 (e)

(i) $\Lambda(u d s) \rightarrow p^{+}+e^{-}+\bar{v}_{e}$
(ii) $n \rightarrow p^{+}+e^{-}+\bar{v}_{e}$

Rate $(i) \propto \sin ^{2} \theta_{c}, \quad$ Rate $(i i) \propto \cos ^{2} \theta_{c}$
$\frac{\text { Rate }(i)}{\operatorname{Rate}(i i)} \approx \tan ^{2} \theta_{c}=\frac{1}{20}$

Question 4 (a)

$$
e^{-}+\gamma \rightarrow \gamma+e^{-}
$$

Question 4 (b)

Applying Feynman rules to $1^{\text {st }}$ diagram,
$(2 \pi)^{4} \int \epsilon_{\mu}(2)\left[\bar{u}(4)\left(i g_{e} \gamma^{\mu}\right) \frac{i(d+m c)}{q^{2}-m^{2} c^{2}}\left(i g_{e} \gamma^{v}\right) u(1)\right] \epsilon_{\nu}^{*}(3) \delta^{4}\left(p_{1}-p_{3}-q\right) \delta^{4}\left(p_{2}+q-p_{4}\right) d^{4} q$ $=-(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{i g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}-m^{2} c^{2}} \epsilon_{\mu}(2) \bar{u}(4) \gamma^{\mu}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{v} u(1) \epsilon_{\nu}^{*}(3)$
$M_{1}=\frac{g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}-m^{2} c^{2}} \epsilon_{\mu}(2) \bar{u}(4) \gamma^{\mu}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{v} u(1) \epsilon_{v}^{*}(3)$

Similarly,
$M_{2}=\frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}-m^{2} c^{2}} \bar{u}(4) \AA_{\mu}^{*}(3)\left(\not p_{1}+\not p_{2}+m c\right) \not \phi_{v}(2) u(1)$
$M=M_{1}+M_{2}$

Question 4 (c)

$\left.\left.\langle | M_{1}\right|^{2}\right\rangle=\frac{1}{4} \sum_{s_{1} S_{2} s_{3} s_{4}}\left[\frac{g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}-m^{2} c^{2}}\right]^{2}\left[\bar{u}(4) \phi(2)\left(p_{1}-\not p_{3}+m c\right) \theta^{*}(3) u(1)\right]\left[\bar{u}(4) \phi(2)\left(p_{1}-\not p_{3}+m c\right) \theta^{*}(3) u(1)\right]^{*}$
Now,

$$
\begin{aligned}
& {\left[u^{\dagger}(4) \gamma^{0} \gamma^{\mu} \epsilon_{\mu}(2)\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{v} \epsilon_{\nu}^{*}(3) u(1)\right]^{\dagger}} \\
& =u^{\dagger}(1) \epsilon_{v}(3) \gamma^{v \dagger}\left(\not p_{1}^{\dagger}-\not p_{3}^{\dagger}+m c\right) \epsilon_{\mu}^{*}(2) \gamma^{\mu \dagger} \gamma^{0 \dagger} u(4) \\
& =\bar{u}(1) \gamma^{0} \gamma^{v \dagger} \epsilon_{v}(3) \gamma^{0} \gamma^{0}\left(\not p_{1}^{\dagger}-\not p_{3}^{\dagger}+m c\right) \gamma^{0} \epsilon_{\mu}^{*}(2) \gamma^{0} \gamma^{\mu \dagger} \gamma^{0 \dagger} u(4) \\
& =\bar{u}(1) \notin(3)\left(\not p_{1}-\not p_{3}+m c\right) \not^{*}(2) u(4)
\end{aligned}
$$

Next do the s_{1}, s_{4} spin summation:
$\sum_{s_{1} s_{4}} \bar{u}(4) \notin(2)\left(\not p_{1}-\not p_{3}+m c\right) \phi^{*}(3) u(1) \bar{u}(1) \phi(3)\left(\not p_{1}-\not p_{3}+m c\right) \phi^{*}(2) u(4)$
$=\operatorname{Tr}\left[\phi(2)\left(\not p p_{1}-\not p_{3}+m c\right) \phi^{*}(3)\left(\not p_{1}+m c\right) \notin(3)\left(\not p_{1}-\not p_{3}+m c\right) \not^{*}(2)\left(\not p_{4}+m c\right)\right]$

Now do the s_{2}, s_{3} summation:

$$
\begin{aligned}
& \sum_{s_{2} s_{3}}(\sim)=\left[\sum_{s_{2}} \epsilon_{\mu}(2) \epsilon_{\lambda}^{*}(2) \sum_{s_{3}} \epsilon_{\kappa}(3) \epsilon_{\nu}^{*}(3)\right] \operatorname{Tr}\left[\gamma^{\mu}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{v}\left(\not p_{1}+m c\right) \gamma^{\kappa}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{\lambda}\left(\not p_{4}+m c\right)\right] \\
& \left.\left.\therefore\langle | M_{1}\right|^{2}\right\rangle=\frac{1}{4}\left[\frac{g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}-m^{2} c^{2}}\right]^{2} Q_{\mu \lambda} Q_{\kappa v} T r\left[\gamma^{\mu}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{v}\left(\not p_{1}+m c\right) \gamma^{\kappa}\left(\not p_{1}-\not p_{3}+m c\right) \gamma^{\lambda}\left(\not p_{4}+m c\right)\right]
\end{aligned}
$$

Question 4 (d)

$\left\langle M_{1} M_{2}^{*}\right\rangle=\frac{1}{4} \sum_{s_{1} s_{2} s_{s} s_{4}} \frac{g_{e}^{2}}{\left.p_{1}-p_{3}\right)^{2}-m^{2} c^{2}} \frac{g_{e}^{2}}{\left(p_{1}+p_{2}\right)^{2}-m^{2} c^{2}}\left[\bar{u}(4) \notin(2)\left(p_{1}-p_{3}+m c\right) \phi^{*}(3) u(1)\right]\left[\bar{u}(1) \ell^{*}(2)\left(\phi_{1}+\phi_{2}+m c\right) \phi(3) u(4)\right]$
$\sum_{s_{1}, s_{4}}[]=\operatorname{Tr}\left[\phi(2)\left(\not p_{1}-\not p_{3}+m c\right) \not^{*}(3)\left(\not p_{1}+m c\right) \phi^{*}(2)\left(\not p_{1}+\not p_{2}+m c\right) \phi(3)\left(\not p_{4}+m c\right)\right]$
$\left\langle M_{1} M_{2}^{*}\right\rangle=\frac{1}{4} \frac{g_{e}^{4}}{\left[\left(p_{1}-p_{3}\right)^{2}-m^{2} c^{2}\right]\left[\left(p_{1}+p_{2}\right)^{2}-m^{2} c^{2}\right]} Q_{\mu \kappa} Q_{\lambda v} T r\left[\gamma^{\mu}\left(\not p_{1}-\not \phi_{3}+m c\right) \gamma^{v}\left(\not p_{1}+m c\right) \gamma^{\kappa}\left(\not p_{1}+\not p_{2}+m c\right) \gamma^{\lambda}\left(\not p_{4}+m c\right)\right]$

Question 4 (e)

Solutions provided by:
Prof. Teo Kien Boon (Questions 1a-b, 2a, 2b(iii), 3a(i), 3e, 4)
Bong Kok Wei (Questions 1c-d, 2b(i)-(ii), 3a(ii)-d)

