This document lacks answers for certain questions. Would you like to help us complete them? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ©

Question 1 (a)

Question 1 (b)

Electron-positron annihilation process in CM frame into three photons:

$$
\begin{aligned}
& e^{+}+e^{-} \rightarrow \gamma+\gamma+\gamma \\
& 1
\end{aligned} 2 \quad 3 \quad 4 \quad 5
$$

In CM frame, $E_{1}=E_{2}=\sqrt{m_{e}^{2} c^{4}+\left|\vec{p}_{1}\right|^{2} c^{2}}=E_{i}$ (say). When all 3 final photons have the same energy, we have:
$E_{3}=\left|\vec{p}_{3}\right| c=e_{4}=\left|\vec{p}_{4}\right| c=E_{5}=\left|\vec{p}_{5}\right| c=($ say $) E_{f}=\left|\vec{p}_{f}\right| c$
Conservation of total energy then requires: $2 E_{i}=3 E_{f}$.

Writing down the four-momentum of each particle:

$$
P_{1}=\left(\frac{E_{i}}{c}, \vec{p}_{1}\right) ; \quad P_{2}=\left(\frac{E_{i}}{c},-\vec{p}_{1}\right) ; \quad P_{3}=\left(\frac{E_{f}}{c}, \vec{p}_{3}\right) ; P_{4}=\left(\frac{E_{f}}{c}, \vec{p}_{4}\right) ; \quad P_{5}=\left(\frac{E_{f}}{c}, \vec{p}_{5}\right)
$$

From the conservation of 4-momentum, we have:
$P_{1}+P_{2}=P_{3}+P_{4}+P_{5}$

Taking the dot product of itself on both sides:

$$
m_{e}^{2} c^{2}+m_{e}^{2}+2\left(\frac{E_{i}^{2}}{c^{2}}+\vec{p}_{1}^{2}\right)=2\left(P_{3} \cdot P_{4}+P_{3} \cdot P_{5}+P_{4} \cdot P_{5}\right)
$$

2 | PC4245 Particle Physics - AY09/10 PYP Solutions
$2 m_{e}^{2}+2\left(\frac{E_{i}^{2}}{c^{2}}+\frac{E_{i}^{2}-m_{e}^{2} c^{4}}{c^{2}}\right)=6 \frac{E_{f}^{2}}{c^{2}}-2 \vec{p}_{3} \cdot\left(\vec{p}_{4}+\vec{p}_{5}\right)-2 \vec{p}_{4} \cdot \vec{p}_{5}$
$4 \frac{E_{i}^{2}}{c^{2}}=8 \frac{E_{f}^{2}}{c^{2}}-2 \frac{E_{f}^{2}}{c^{2}} \cos \theta_{45}\left(\because \vec{p}_{4}+\vec{p}_{5}=-\vec{p}_{3}\right)$
where θ_{45} is the angle between photon 4 and photon 5 .

Since $2 E_{i}=3 E_{f}$, this simplifies to:
$\cos \theta_{45}=-$?, \quad i. e. $\theta_{45}=120^{\circ}$.

Similarly, we have:
$\vec{p}_{3} \cdot \vec{p}_{5}=-\left(\vec{p}_{4}+\vec{p}_{5}\right) \cdot \vec{p}_{5}=-\frac{E_{f}^{2}}{c^{2}}\left(\cos \theta_{45}+1\right)=-\frac{E_{f}^{2}}{2 c^{2}}$
$\cos \theta_{35}=\frac{\vec{p}_{3} \cdot \vec{p}_{5}}{E_{f}^{2}} c^{2}=-$?
Same thing for θ_{34}.

Hence $\theta_{34}=\theta_{35}=\theta_{45}=120^{\circ}$ (Q.E.D.).

Question 1 (c)

Conserved quantities does not change in al ref frame but may change when neasired in anther ref frame (momentum)

Question 2 (a)

(i) First find all isospin combinations for all $p \pi$ initial states and for all ΣK final states. $\pi^{+}+p:|11\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\left|\frac{3}{2} \frac{3}{2}\right\rangle$
$\pi^{0}+p:|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle-\frac{1}{\sqrt{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle$
$\pi^{-}+p:|1-1\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle$
$\Sigma^{+}+\kappa^{+} \& \Sigma^{+}+\bar{\kappa}^{0}:|11\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\left|\frac{3}{2} \frac{3}{2}\right\rangle$
$\Sigma^{0}+\kappa^{+} \& \Sigma^{0}+\bar{\kappa}^{0}:|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle-\frac{1}{\sqrt{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle$
$\Sigma^{-}+\kappa^{+} \& \Sigma^{-}+\bar{\kappa}^{0}:|1-1\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle-\sqrt{3}\left|\frac{1}{2}-\frac{1}{2}\right\rangle$
$\Sigma^{+}+\kappa^{0} \& \Sigma^{+}+\kappa^{-}:|11\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}\left|\frac{3}{2} \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|\frac{1}{2} \frac{1}{2}\right\rangle$
$\Sigma^{0}+\kappa^{0} \& \Sigma^{0}+\kappa^{-}:|10\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\sqrt{\frac{2}{3}}\left|\frac{3}{2}-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{3}}\left|\frac{1}{2}-\frac{1}{2}\right\rangle$
$\Sigma^{-}+\kappa^{0} \& \Sigma^{-}+\kappa^{-}:|1-1\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle=\left|\frac{3}{2}-\frac{3}{2}\right\rangle$
By observation, there are only five such processes $p \pi \rightarrow \Sigma K$ compatible with isospin conservation and charge conservation:
A. $\pi^{+}+p \rightarrow \Sigma^{+}+\kappa^{+}$
B. $\pi^{0}+p \rightarrow \Sigma^{0}+\kappa^{+}$
C. $\pi^{0}+p \rightarrow \Sigma^{+}+\kappa^{0}$
D. $\pi^{-}+p \rightarrow \Sigma^{-}+\kappa^{+}$
E. $\pi^{-}+p \rightarrow \Sigma^{0}+\kappa^{0}$
(ii) The total isospin can be $\frac{3}{2}$ or $\frac{1}{2}$. So there are just two distinct amplitudes here:
M_{3}, for $I=\frac{3}{2}$, and M_{1}, for $I=\frac{1}{2}$.
$M_{A}=M_{3}$
$M_{B}=\frac{2}{3} M_{3}+\frac{1}{3} M_{1}$
$M_{C}=\frac{\sqrt{2}}{3} M_{3}-\frac{\sqrt{2}}{3} M_{1}$
$M_{D}=\frac{1}{3} M_{3}+\frac{2}{3} M_{1}$
$M_{E}=\frac{\sqrt{2}}{3} M_{3}-\frac{\sqrt{2}}{3} M_{1}$

The cross sections, then, stand in the ratio

$$
\sigma_{A}: \sigma_{B}: \sigma_{C}: \sigma_{D}: \sigma_{E}=\left|M_{3}\right|^{2}: \frac{1}{9}\left|2 M_{3}+M_{1}\right|^{2}: \frac{2}{9}\left|M_{3}-M_{1}\right|^{2}: \frac{1}{9}\left|M_{3}+2 M_{1}\right|^{2}: \frac{2}{9}\left|M_{3}-M_{1}\right|^{2}
$$

When $I=\frac{3}{2}$ channel dominates, $M_{3} \gg M_{1}$, and hence $\sigma_{A}: \sigma_{B}: \sigma_{C}: \sigma_{D}: \sigma_{E}=\left|M_{3}\right|^{2}: \frac{4}{9}\left|M_{3}\right|^{2}: \frac{2}{9}\left|M_{3}\right|^{2}: \frac{1}{9}\left|M_{3}\right|^{2}: \frac{2}{9}\left|M_{3}\right|^{2}=9: 4: 2: 1: 2$

Question 2 (b) (i)
$d=n+p . \quad I=1,0$
when $I=0 \quad|00\rangle=\frac{1}{\sqrt{2}}(n p-p n)$

4 | PC4245 Particle Physics - AY09/10 PYP Solutions

$$
\begin{aligned}
& \therefore I_{d}=0
\end{aligned}
$$

Question 2 (b) (ii)

$$
\begin{aligned}
& \operatorname{Rate}\left(n+n \rightarrow d+\pi^{0}\right)=|1,-1\rangle \\
& \operatorname{Rate}\left(p+n \rightarrow d+\pi^{+}\right)
\end{aligned}
$$

Question 2 (c)

$$
\begin{gathered}
P_{i}=-1 \quad J_{i}-0=J_{f} \\
P_{f}=P_{1} P_{2}(-1)^{2}
\end{gathered}
$$

since pions are spinless $J=L$. and $P_{\pi}=-1$

$$
=+1
$$

For strong interaction to occur, parity must be conserved.

$$
\begin{aligned}
P_{f} & =P_{1} P_{2} P_{3}(-1)^{2} \\
& =-1
\end{aligned}
$$

Therefore, η can coning decay strongly into 3 pions dare to parity invariance.

Question 3 (a)

Question 3 (b)

$$
\sim \frac{|g c|^{2}}{|g c d|^{2}}=\frac{\cos ^{2} \theta_{c}}{\sin ^{2} \theta_{c}}=\frac{1}{\tan ^{2} \theta_{c}}=20
$$

Decay of $c \rightarrow s$ is 20 tines mere likely than $c \rightarrow d$

Question 3 (c)

Question 4 (a)

$-i M=\int \frac{d^{4} a}{(2 \pi)^{4}} \bar{u}(3)\left(i g_{e} \gamma^{N}\right) \dot{u}(1)\left(\frac{-i g_{\mu v}}{q^{2}}\right) \bar{u}(4)\left(i g_{e} \gamma^{v}\right) u(2)$
$M=\frac{-g_{e}^{2}}{\left(R-B_{3}\right)^{2}}\left[\bar{u}(3) \gamma^{\mu} u(1)\right]\left[\bar{u}(4) \gamma_{\mu} u(2)\right]$.
$M M^{*}=A^{2}\left[\bar{u}(3) \gamma^{\mu} u(1)\right]\left[\bar{u}(4) \gamma_{\mu} u(2)\right]\left[\bar{u}(2) \gamma_{v} u(4)\right]$
$\left\langle M \mu^{*}\right\rangle=\frac{A^{2}}{4} \operatorname{Tr}\left[\begin{array}{l}\left.\operatorname{Tr}_{v}^{\mu}\left[\mathbb{P}_{1}+m_{1} c\right) \gamma_{\mu}^{v}\left(\mathbb{P}_{3}+m_{3} c\right)\right] \\ \gamma_{\mu}\left(\mathbb{P}_{2}+m_{2} c\right) \\ \gamma_{v}\end{array}\left(\mathbb{P}_{4}+m_{4} c\right)\right]$
$\operatorname{Tr}\left[\gamma^{\nu}\left(\mathbb{P}_{1}+m_{c} c\right) \gamma^{v}\left(\mathbb{P}_{3}+m_{5}\right)\right]$
$=\operatorname{Tr}\left[\gamma^{\mu} \mathbb{P}_{1} \gamma^{v} \mathbb{P}_{3}\right]+m_{3} C \operatorname{Tr} I \gamma^{\mu}\left[\mathbb{P}_{1} \gamma^{v}\right]+m_{1} c \operatorname{Tr}\left[\gamma^{\nu} \gamma^{\nu} \mathbb{P}_{3}\right]$ $+m_{1} m_{3} C^{2} \operatorname{Tr}\left[\gamma^{\nu} \gamma^{v}\right]$
$=\left(P_{1}\right)_{\lambda}\left(P_{3}\right)_{k} T_{r}\left(\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu} \gamma^{k}\right)+4 g^{\mu \nu} m_{e}^{2} C^{\nu}$
$=4\left(P_{1}\right)_{\lambda}\left(P_{3}\right)_{k}\left(g^{\mu \lambda} g^{v k}-g^{\mu \nu} g^{\lambda k}+g^{\mu k} g^{\lambda v}\right)+4 g^{\mu v} m_{e}^{2} c^{2}$
$=4\left(\left(P_{1}\right)^{\mu}\left(P_{3}\right)^{v}-\left(P_{1} \cdot P_{3}\right) g^{\mu v}+P_{1}^{v} P_{3}^{\mu}+g^{\mu v} m_{2}^{2} C^{2}\right)$
$\operatorname{Tr}\left[\gamma_{\mu}\left(P_{2}+m_{2} C \mid \gamma_{v}\left(P_{4}+m_{4} C\right)\right.\right.$
$=4\left(P_{i \mu}^{\mu} P_{A v}-\left(P_{2} \cdot P_{4}\right) g_{\mu v}+P_{2}^{v} P_{4}^{\mu}+4 g_{\mu v} m_{\mu}^{2} C^{2}\right)$
\qquad
$-2\left(P_{2} \cdot P_{4}\right)\left(m_{e l}\right)^{2}+4\left(m_{e} m_{\mu l}\right)^{2}$
$16\left[\left(P_{1} \cdot P_{2}\right)\left(P_{3} \cdot P_{4}\right)-\left(P_{2} \cdot P_{4}\right)\left(P_{1} \cdot P_{3}\right)+\left(P_{1} \cdot P_{4}\right)\left(P_{2} \cdot P_{3}\right)\right.$
$\left.-\left(P_{1} \cdot P_{3}\right)\left(P_{2} \cdot P_{4}\right)+4\left(P_{1} \cdot P_{3}\right)\left(P_{2} \cdot P_{4}\right)-\left(P_{1} \cdot P_{3}\right)\left(P_{2} \cdot P_{4}\right)\left(P_{2} \cdot P_{2}\right) m_{c} C\right)^{2}$
$-4\left(P_{1} \cdot P_{S}\right)\left(m_{\mu} C\right)^{2}=32 I\left(P_{1} \cdot P_{2}\right)\left(P_{3} \cdot P_{4}\right)+\left(R_{1} P_{4}\right)\left(P_{2} \cdot P_{3}\right)-\left(P_{1} \cdot P_{3}\right)\left(m_{\mu} c\right)^{2}-$

Question 4 (b)

Question 4 (c)

Solutions provided by:
Prof. Teo Kien Boon (Questions 1b, 2a)
Bong Kok Wei (Questions 1a, 1c, 2b-3b, 4a-b)

