This document lacks answers for certain questions. Would you like to help us complete them? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ©

Question 1 (a) (i)

$$
\begin{aligned}
& \frac{\rho=1}{m} \cdot \frac{d^{3} \vec{P}_{2}{ }^{2}}{P_{2}^{c}} \frac{d^{3} \vec{P}_{3}}{P_{3}{ }^{c}} S^{(4)}\left(P_{1}-P_{2}-P_{3}\right) \\
& =\int \frac{|M|^{2}}{2(4 \pi)^{2} \hbar m_{1}} \frac{d^{3} P_{2} d^{3} P_{3}}{P_{2}^{c} P_{3}^{3}} 8\left(m_{1} c-\frac{E_{1}}{c}-\frac{E_{3}}{c}\right) S\left(P_{2}-P_{2}\right) \\
& =\int \frac{|M|^{2}}{2(4 \pi)^{2} \hbar m_{1}} \frac{\left|P_{2}\right|^{2} d P_{2}}{P_{2}^{0} P_{3}^{0}} d \Omega \quad 8\left(m, c-\frac{E}{C}\right) \\
& E=E_{2}+E_{s} \\
& =\sqrt{{c^{2}\left|p_{2}\right|^{2}+m_{2}^{2}{ }^{4}}^{4}+\sqrt{c^{2}\left|p_{1}\right|^{2}+w_{3}^{2} c^{4}}+c^{4}} \\
& \frac{d E_{2}}{d P_{2}}=\frac{\left|P_{2}\right| c^{2}}{E_{2}}+\frac{\left|D_{2}\right| c^{2}}{F_{3}} \\
& =\frac{E\left|P_{2}\right| C^{2}}{E_{2} E_{3}} \\
& \left.d E \left\lvert\, \frac{E_{2} E_{3}}{E\left|R_{2}\right| C^{2}}\right.\right)^{E 2}=d P_{2} . \\
& =\int \frac{|M|^{2}}{2(4 \pi)^{2} \hbar m_{1}} \frac{\left|B_{2}\right| d E d \Omega \delta\left(m_{1} C-\frac{E}{C}\right)}{E} \\
& \int \frac{|M|^{2}}{2(4 \pi)^{2} \hbar m_{1}} \frac{\left|D_{2}\right| c}{m c^{2}} \Rightarrow \Gamma=\frac{|M|^{2}\left|P_{2}\right|}{8 \pi \hbar m_{1}^{2} c}
\end{aligned}
$$

Question 1 (a) (ii)

$$
\begin{aligned}
& m c^{2}=\left(c^{2}\left|P_{2}\right|^{2}+m_{2}^{2} C^{4}\right)^{1 / 2}+\left(C^{2}\left|P_{2}\right|^{2}+m_{3}^{2} C^{4}\right)^{1 / 2} \\
& \left(m c^{2}-E_{3}\right)^{2}=\left.C^{2} P_{2}\right|^{2}+m_{2}^{2} C^{4} \\
& m_{1}^{2} C^{4}+E_{3}^{2}-2 m c^{2} E_{3}=C^{2}\left|P_{2}\right|^{2}+m_{3}^{2} C^{4} \\
& m_{1}^{2} C^{4}+m_{3}^{2} C^{4}-m_{2}^{2} C^{4}=2 m_{1} c^{2} E_{3} \\
& \frac{1}{5 m_{1}}\left(m_{1}^{2}+m_{3}^{2}-m_{2}^{2}\right)^{2}={E_{3}}_{2}^{2} C^{4}=c^{2}\left|P_{2}\right|^{2}+m_{3}^{2} C^{4} \Rightarrow \text { solve for }\left|P_{2}\right| \\
& \frac{1}{4 m_{1}^{2}}\left(m_{1}^{2}+m_{3}^{2}-m_{2}^{2}\right)^{4}
\end{aligned}
$$

Question 1 (b)

- Electric dipole moment $(\vec{d}(t))$
- Quantities that are precisely zero when reaction is reversed

Question 2 (a) (i)

Question 2 (a) (ii)

181 reaction vidates change conjugation.

$$
\begin{aligned}
C_{f} & =(-1)^{2} \\
& =1
\end{aligned}
$$

Question 2 (a) (iii)

Question 2 (a) (iv)

$$
\begin{aligned}
J_{i} & =0=J_{t} \\
& \begin{aligned}
P_{F} & =0 \\
& =+i
\end{aligned} P_{\pi}(-1)^{2} \\
& =+1
\end{aligned}
$$

Parity not conserved.

Question 2 (b)
Feynman diagram with 3 pions can be separated at the gluon lines, therefore reaction is heavily suppress.

Question 3 (a)

$M=\frac{g_{\omega}^{2}}{8\left(M_{\omega} c\right)^{2}}\left[\bar{u}(3) \gamma^{\mu}\left(1-\gamma^{5}\right) u(1)\right]\left[\bar{u}(4) \gamma_{\mu}\left(1-\gamma^{5}\right) u(2)\right]$
$\left[\bar{u}(3) \gamma^{\mu}\left(1-\gamma^{5}\right) u(1)\right]^{\dagger}=\left[u^{\dagger}(3) \gamma^{0} \gamma^{\mu}\left(1-\gamma^{5}\right) u(1)\right]^{\dagger}$
$=u^{\dagger}(1)\left(1-\gamma^{5}\right)^{\dagger} \gamma^{\mu \dagger} \gamma^{0 \dagger} u(3)$
$=u^{\dagger}(1) \gamma^{0} \gamma^{0}\left(1-\gamma^{5}\right) \gamma^{\mu \dagger} \gamma^{0} u(3)$
$=\left[\bar{u}(1)\left(1+\gamma^{5}\right) \gamma^{\mu} u(3)\right]$
$=\left[\bar{u}(1) \gamma^{\mu}\left(1-\gamma^{5}\right) u(3)\right]$

Hence
$\begin{aligned} \sum_{s_{1} s_{2} s_{3} s_{3}}|M|^{2}= & {\left[\frac{g_{\omega}^{2}}{8\left(M_{\omega} c\right)^{2}}\right]^{2}\left[\bar{u}(3) \gamma^{\mu}\left(1-\gamma^{5}\right) u(1) \bar{u}(1) \gamma^{v}\left(1-\gamma^{5}\right) u(3)\right]\left[\bar{u}(4) \gamma_{\mu}(1\right.} \\ & \left.\left.-\gamma^{5}\right) u(2) \bar{u}(2) \gamma_{v}\left(1-\gamma^{5}\right) u(4)\right]\end{aligned}$
Using $\sum_{s} u^{(s)}(p) \bar{u}^{(s)}(p)=\not p+m c$,

$$
\left.\begin{array}{l}
\sum_{s_{1} s_{2} s_{3} s_{3}}|M|^{2}= \\
\quad\left[\frac{g_{\omega}^{2}}{8\left(M_{\omega} c\right)^{2}}\right]^{2} \operatorname{Tr}\left[\gamma^{\mu}\left(1-\gamma^{5}\right)\left(\not p_{1}+m_{1} c\right) \gamma^{v}\left(1-\gamma^{5}\right) \not p_{3}\right] \operatorname{Tr}\left[\gamma _ { \mu } (1 - \gamma ^ { 5 }) \left(\not p_{2}\right.\right. \\
\\
\left.\left.\quad+m_{2} c\right) \gamma_{v}\left(1-\gamma^{5}\right) \not p_{4}\right]
\end{array}\right\} \begin{aligned}
\operatorname{Tr}\left[\left(\not p_{1}+m c\right) \gamma^{v}\left(1-\gamma^{5}\right) \not p_{3} \gamma^{\mu}\left(1-\gamma^{5}\right)\right]=2 \operatorname{Tr}\left[\left(\not{ }_{1}+m c\right) \gamma^{v}\left(1-\gamma^{5}\right) \not p_{3} \gamma^{\mu}\right] \\
=2 \operatorname{Tr}\left[\left(\not p_{1}+m c\right) \gamma^{v} \not p_{3} \gamma^{\mu}-\left(\not p_{1}+m c\right) \gamma^{v} \gamma^{5} p_{3} \gamma^{\mu}\right] \\
=2\left[\operatorname{Tr}\left(\not p 1 \gamma^{v} \not p_{3} \gamma^{\mu}\right)-\operatorname{Tr}\left(\not p_{1} \gamma^{v} \gamma^{5} \not p_{3} \gamma^{\mu}\right)\right] \\
=2 p_{1 \lambda} p_{3 \sigma} \operatorname{Tr}\left(\gamma^{\lambda} \gamma^{v} \gamma^{\sigma} \gamma^{\mu}\right)-2 p_{1 \lambda} p_{3 \sigma} \operatorname{Tr}\left(\gamma^{\lambda} \gamma^{v} \gamma^{5} \gamma^{\sigma} \gamma^{\mu}\right) \\
=8\left[p_{1}^{v} p_{3}^{\mu}+p_{1}^{\mu} p_{3}^{v}-g^{\mu \nu}\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)-i \epsilon^{\lambda v \sigma \mu} p_{1 \lambda} p_{3 \sigma}\right]
\end{aligned}
$$

Similarly, the second trace is:
$8\left[p_{2 v} p_{4 \mu}+p_{3 \mu} p_{4 \nu}-g_{\mu \nu}\left(\vec{p}_{2} \cdot \vec{p}_{4}\right)-i \epsilon_{\kappa \nu \tau \mu} p_{2}^{\kappa} p_{4}^{\tau}\right]$

Note that $p_{1}^{v} p_{3}^{\mu}+p_{1}^{\mu} p_{3}^{v}-g^{\mu \nu}\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)$ is symmetric in $\mu \leftrightarrow v$ index whereas $\epsilon^{\lambda v \sigma \mu}$ is antisymmetric in $\mu \leftrightarrow v$, hence their product is zero.

$$
\begin{aligned}
& \therefore \sum_{s_{1} s_{2} s_{3} 3}|M|^{2}=64\left[\frac{g_{\omega}^{2}}{8\left(M_{\omega} c\right)^{2}}\right]^{2}\left\{\left[p_{1}^{v} p_{3}^{\mu}+p_{1}^{\mu} p_{3}^{v}-g^{\mu \nu}\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)\right]\left[p_{2 v} p_{4 \mu}+p_{3 \mu} p_{4 v}-g_{\mu \nu}\left(\vec{p}_{2} \cdot \vec{p}_{4}\right)\right]+\left(-i \epsilon^{\left.\left.\lambda v \sigma \mu_{p_{12}} p_{3 \sigma}\right)\left(-i \epsilon_{\kappa v \tau \mu} p_{2}^{\kappa} p_{4}^{\tau}\right)\right\}}\right.\right. \\
& {\left[p_{1}^{v} p_{3}^{\mu}+p_{1}^{\mu} p_{3}^{v}-g^{\mu v}\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)\right]\left[p_{2 v} p_{4 \mu}+p_{3 \mu} p_{4 v}-g_{\mu v}\left(\vec{p}_{2} \cdot \vec{p}_{4}\right)\right]} \\
& =2\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)+2\left(\vec{p}_{1} \cdot \vec{p}_{4}\right)\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)-2\left(\vec{p}_{1} \cdot \vec{p}_{3}\right)\left(\vec{p}_{2} \cdot \vec{p}_{4}\right)-2\left(\vec{p}_{2} \cdot \vec{p}_{4}\right)\left(\vec{p}_{1} \cdot \vec{p}_{3}\right)+4\left(\vec{p}_{1} \cdot \vec{p}_{3}\right)\left(\vec{p}_{2} \cdot \vec{p}_{4}\right) \\
& =2\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)+2\left(\vec{p}_{1} \cdot \vec{p}_{4}\right)\left(\vec{p}_{2} \cdot \vec{p}_{3}\right) \\
& (-i)^{2} \epsilon^{\lambda v \sigma \mu} \epsilon_{\kappa v \tau \mu} p_{1 \lambda} p_{3 \sigma} p_{2}^{\kappa} p_{4}^{\tau}=2\left[\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)-\left(\vec{p}_{1} \cdot \vec{p}_{4}\right)\left(\vec{p}_{2} \cdot \vec{p}_{3}\right)\right]
\end{aligned}
$$

Adding both, we have $\rightarrow 4\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)$.
$\therefore \quad \sum_{s_{1} s_{2} s_{3} s_{3}}|M|^{2}=4\left[\frac{g_{\omega}}{M_{\omega} c}\right]^{4}\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)$
Now we sum over final e^{-}spins but average over initial μ^{-}spins (2 possible spins), hence factor of $\frac{1}{2}$.
$\left.\left.\therefore\langle | M\right|^{2}\right\rangle=2\left[\frac{g_{\omega}}{M_{\omega} c}\right]^{4}\left(\vec{p}_{1} \cdot \vec{p}_{2}\right)\left(\vec{p}_{3} \cdot \vec{p}_{4}\right)$

Question 3 (b)

$M=-\frac{g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}}\left[\bar{u}^{\left(s_{3}\right)}\left(p_{3}\right) \gamma^{\mu} u^{\left(s_{1}\right)}\left(p_{1}\right)\right]\left[\bar{u}^{\left(s_{4}\right)}\left(p_{4}\right) \gamma_{\mu} u^{\left(s_{2}\right)}\left(p_{2}\right)\right]+\frac{g_{e}^{2}}{\left(p_{1}-p_{4}\right)^{2}}\left[\bar{u}^{\left(s_{4}\right)}\left(p_{4}\right) \gamma^{\mu} u^{\left(s_{1}\right)}\left(p_{1}\right)\right]\left[\bar{u}^{\left(s_{3}\right)}\left(p_{3}\right) \gamma_{\mu} u^{\left(s_{2}\right)}\left(p_{2}\right)\right]$

Question 4 (a)
Question 4 (b)

Question 4 (c)
$\left(\gamma^{\mu} p_{n}-m c\right) u(p)=0$

$$
\gamma^{5} \nexists(P)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{U_{A}}{U_{B}}
$$

$$
=\binom{U_{B}}{U_{A}}
$$

$$
\left(\begin{array}{cc}
\frac{((\vec{p} \cdot \sigma)}{E+m c^{2}} & 0 \\
0 & \frac{(p \cdot \sigma)}{E-m c^{2}}
\end{array}\right)\binom{u_{A}}{u_{B}}
$$

$$
=\left(\begin{array}{cc}
\frac{c(\vec{P} \cdot \sigma)}{E+m c^{2}} & U_{A} \\
\frac{c(P \cdot \sigma)}{E+m c^{2}} & U_{B}
\end{array}\right)
$$

$\vec{P} \cdot \vec{\sigma}\binom{0}{1}=\binom{P_{x}-i P_{y}}{-P_{z}}$

$$
\begin{array}{r}
\left.\quad \begin{array}{r|c}
E-m c^{2} & \left.D\right|^{2} \\
\hline
\end{array}\right)=\binom{1}{0} \\
\left.\left.\frac{\overrightarrow{C P} \cdot 0}{E-m c^{2}}\binom{P_{x}-1 P_{y}}{-P_{z}}=\frac{c}{E-m c^{2}} \right\rvert\, \begin{array}{l}
|P|^{2}
\end{array}\right)=\binom{0}{1}
\end{array}
$$

Solutions provided by:
Prof. Teo Mien Boon (Questions 3a-b)
Bong Kok Wei (Questions 1, 2a(i),(ii),(iv), Db, 4c)

