This document lacks answers for certain questions. Would you like to help us complete them? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ©

Question 1 (a)

Use conservation of 4-momentum: $P_{A}+P_{B}=P_{C}+P_{D}$
Rearranging to get: $P_{A}-P_{C}=P_{D}-P_{B}$
Taking the invariant dot product squared on both sides, and noting that A and C are massless:
$-2\left(\frac{E_{A} E_{C}}{c^{2}}-\vec{p}_{A} \cdot \vec{p}_{C}\right)=m_{D}^{2} c^{2}+m_{B}^{2} c^{2}-2 E_{D} m_{B}$
Since $\vec{p}_{A} \cdot \vec{p}_{C}=\frac{E_{A} E_{C} \cos \theta}{c^{2}}$,
and $E_{D}=E_{A}+m_{B} c^{2}-E_{C}$ from energy conservation, we get, after simplifying:
$\cos \theta=\frac{2 E_{A} E_{C}-2 m_{B} c^{2}\left(E_{A}-E_{C}\right)+\left(m_{D}^{2}-m_{B}^{2}\right) c^{4}}{2 E_{A} E_{C}}$

Question 1 (b) (i)

Question 1 (b) (ii)

Question 1 (b) (iii)

Question 1 (b) (iv)

$$
d d s \rightarrow \text { nd }+e^{-}+\bar{v}_{e}
$$

Question 1 (b) (v)

Question 1 (c)
SU(3) flavour is not an exact symmetric while su(3) color is an exact symmetry where the interighange of particle will not affect the physics.

Question 2 (a)

$$
\begin{aligned}
& K^{-}+P=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle=|11\rangle \\
& \left.K^{0}+P_{1}=\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}\right| \frac{1}{2}\right\rangle=\sqrt{\frac{T}{2}}|10\rangle-\sqrt{\frac{1}{2}}|00\rangle
\end{aligned}
$$

(i): (ii) :(iii):(iv)

$$
\begin{aligned}
& \sum^{0} \pi^{\pi^{0}} \\
& |10\rangle|10\rangle=\sqrt{\frac{2}{3}}|20\rangle-\sqrt{\frac{1}{3}}|00\rangle \\
& \left.\sum^{+} \pi^{-}\right\rangle=\sqrt{\frac{1}{6}}|20\rangle+\sqrt{\frac{1}{2}}|10\rangle+\sqrt{\frac{1}{3}}|00\rangle \\
& \left.\sum^{+}\right\rangle|1-1\rangle=\pi^{c} \\
& \left.|1|\rangle|10\rangle=\sqrt{\frac{1}{2}}|21\rangle+\sqrt{\frac{1}{2}}|1|\right\rangle \\
& \left.\sum^{0}\right\rangle+\pi^{+} \\
& |10| 111\rangle=\sqrt{\frac{1}{2}}|21\rangle-\sqrt{\frac{1}{2}}|11\rangle \\
& \text { ii }: \frac{1}{2} M_{1}: \text { (ii) }=\text { (iv) } \\
& 0: 0
\end{aligned}
$$

Question 2 (b)

Conservation of angular momentum requires: $J_{i}=J_{f}$
$J_{i}=J_{A}=1 ; J_{f}=L_{B C}\left(\operatorname{since} J_{B}=J_{C}=0\right)$
Hence $L_{B C}=1$.
Conservation of parity requires: $P_{A}=P_{B C}=P_{B} \cdot P_{C} \cdot(-1)^{L_{B C}}$
Since $L_{B C}=1$, this gives us the selection rule: $P_{A}=-P_{B} \cdot P_{C}$.

So allowed decays are:
$1^{+} \rightarrow 0^{+}+0^{-}$
$1^{+} \rightarrow 0^{-}+0^{+}$
$1^{-} \rightarrow 0^{+}+0^{+}$
$1^{-} \rightarrow 0^{-}+0^{-}$

Forbidden decays are:
$1^{+} \rightarrow 0^{+}+0^{+}$
$1^{+} \rightarrow 0^{-}+0^{-}$
$1^{-} \rightarrow 0^{+}+0^{-}$
$1^{-} \rightarrow 0^{-}+0^{+}$

Question 2 (c)

In weak interactions, all interacting neutrinos are found to be left-handed and all interacting antineutrinos right-handed. Hence we can label the handedness of the 2 given reactions as follows:
(1) $\mu^{-} \rightarrow e^{-}+\bar{v}_{e}(R)+\bar{v}_{\mu}(L)$
(2) $\mu^{+} \rightarrow e^{+}+v_{e}(L)+\bar{v}_{\mu}(R)$
where (L) and (R) indicates the handedness respectively.
However, C converts neutrinos into antineutrinos and vice versa, without affecting the handedness. Hence applying C to reaction (1) and (2) yields:
C-transformed (1) : $\mu^{+} \rightarrow e^{+}+v_{e}(R)+\bar{v}_{\mu}(L)$
C-transformed (2) : $\mu^{-} \rightarrow e^{-}+\bar{v}_{e}(L)+\bar{v}_{\mu}(R)$
which each contains unphysical neutrinos and antineutrinos with the incorrect handedness. Hence reactions (1) and (2) provide evidence for the non-invariance of C.

However, the combined CP operation changes left-handed neutrinos into right-handed antineutrinos and vice versa, both of which participate in weak interactions; and hence CP converts reaction (1) into reaction (2) and vice versa. So the existence of the two reactions is consistent with the invariance of CP.

Question 3 (a)

Decay of $D^{+}(c \bar{d})$ meson $\begin{aligned} & \nearrow K^{-} \pi^{+} \pi^{+} \\ & \searrow K^{+} \pi^{-} \pi^{+}\end{aligned}$

Diagram 1: $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$

Diagram 2: $D^{+} \rightarrow K^{+} \pi^{-} \pi^{+}$

By Cabibbo theory, the quark W^{+}coupling has a factor of $\cos \theta_{c}$ if the 2 quark flavours involved come from the same generation (i.e. c with s, u with d) but a "suppressed" factor of $\sin \theta_{c}$ if the 2 quark flavours come from different generations (i.e. c with d, u with s). Hence from diagram $1, D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$decay mode, the decay rate will be proportional to $\cos ^{4} \theta_{c}$ whereas from diagram $2, D^{+} \rightarrow K^{+} \pi^{-} \pi^{+}$decay mode, the decay rate will be proportional to $\sin ^{4} \theta_{c}$.
\therefore Rate of $\frac{D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}}{D^{+} \rightarrow K^{+} \pi^{-} \pi^{+}} \approx\left(\frac{\cos \theta_{c}}{\sin \theta_{c}}\right)^{4} \approx 20^{2}=400$ times!

Question 3 (b)

(i) $B_{s}^{0}(\bar{b} s) \rightarrow J / \psi(c \bar{c})+\phi(s \bar{s})$
(ii) $B_{s}^{0}(\bar{b} s) \rightarrow \pi^{+} \pi^{-}$

From CKM matrix, $\begin{aligned} & V_{c b}=0.0410 \\ & V_{c s}=0.9735\end{aligned}$ whereas $\begin{aligned} & V_{u b}=0.00347 \\ & V_{u s}=0.2253\end{aligned}$
Since rate of $B_{s}^{0}(\bar{b} s) \rightarrow J / \psi(c \bar{c})+\phi(s \bar{s})$ will incur factors of $\left|V_{c b}\right|^{2}\left|V_{c s}\right|^{2}$ while rate of $B_{s}^{0}(\bar{b} s) \rightarrow \pi^{+} \pi^{-}$will incur factors of $\left|V_{u b}\right|^{2}\left|V_{u s}\right|^{2}$, the values of the $\left|V_{i j}\right|^{2}$ tell us that rate of $B_{s}^{0}(\bar{b} s) \rightarrow J / \psi(c \bar{c})+\phi(s \bar{s}) \gg B_{s}^{0}(\bar{b} s) \rightarrow \pi^{+} \pi^{-}$.

Question 3 (c)
Question 4 (a)

Question 4 (b)

$M=-\frac{g_{e}^{2}}{\left(p_{1}-p_{3}\right)^{2}}\left[\bar{u}^{\left(s_{3}\right)}\left(p_{3}\right) \gamma^{\mu} u^{\left(s_{1}\right)}\left(p_{1}\right)\right]\left[\bar{u}^{\left(s_{4}\right)}\left(p_{4}\right) \gamma_{\mu} u^{\left(s_{2}\right)}\left(p_{2}\right)\right]+\frac{g_{e}^{2}}{\left(p_{1}-p_{4}\right)^{2}}\left[\bar{u}^{\left(s_{4}\right)}\left(p_{4}\right) \gamma^{\mu} u^{\left(s_{1}\right)}\left(p_{1}\right)\right]\left[\bar{u}^{\left(s_{3}\right)}\left(p_{3}\right) \gamma_{\mu} u^{\left(s_{2}\right)}\left(p_{2}\right)\right]$

Question 4 (c)

Solutions provided by:
Prof. Teo Kien Boon (Questions 1a, 2b-c, 3a-b, 4b)
Bong Kok Wei (Questions 1b-2a)

