This document lacks answers for certain questions. Would you like to help us complete them? If yes, Please send your suggested answers to nus.physoc@gmail.com. Thanks! ©

Question 1 (a)

Use conservation of 4-momentum: $P_A + P_B = P_C + P_D$

Rearranging to get: $P_A - P_C = P_D - P_B$

Taking the invariant dot product squared on both sides, and noting that *A* and *C* are massless:

$$-2\left(\frac{E_A E_C}{c^2} - \vec{p}_A \cdot \vec{p}_C\right) = m_D^2 c^2 + m_B^2 c^2 - 2E_D m_B$$

Since $\vec{p}_A \cdot \vec{p}_C = \frac{E_A E_C \cos \theta}{c^2}$,

and $E_D=E_A+m_Bc^2-E_C$ from energy conservation, we get, after simplifying:

$$\cos\theta = \frac{2E_A E_C - 2m_B c^2 (E_A - E_C) + (m_D^2 - m_B^2)c^4}{2E_A E_C}$$

Question 1 (b) (i)

Question 1 (b) (ii)

Question 1 (b) (iii)

Question 1 (b) (iv)

Question 1 (b) (v)

Question 1 (c)

exact symmetry where the interghange of particle will not affect the physics.

Question 2 (a)

Question 2 (b)

Conservation of angular momentum requires: $J_i = J_f$

$$J_i = J_A = 1$$
; $J_f = L_{BC}$ (since $J_B = J_C = 0$)

Hence $L_{BC} = 1$.

Conservation of parity requires: $P_A = P_{BC} = P_B \cdot P_C \cdot (-1)^{L_{BC}}$

Since $L_{BC} = 1$, this gives us the selection rule: $P_A = -P_B \cdot P_C$.

So allowed decays are:

$$1^+ \rightarrow 0^+ + 0^-$$

$$1^+ \rightarrow 0^- + 0^+$$

$$1^- \rightarrow 0^+ + 0^+$$

$$1^{-} \rightarrow 0^{-} + 0^{-}$$

Forbidden decays are:

$$1^+ \rightarrow 0^+ + 0^+$$

$$1^+ \rightarrow 0^- + 0^-$$

$$1^- \to 0^+ + 0^-$$

$$1^- \to 0^- + 0^+$$

Question 2 (c)

In weak interactions, all interacting neutrinos are found to be left-handed and all interacting antineutrinos right-handed. Hence we can label the handedness of the 2 given reactions as follows:

$$(1)\,\mu^- \rightarrow e^- + \bar{\nu}_e(R) + \bar{\nu}_\mu(L)$$

$$(2)\,\mu^+ \rightarrow e^+ + \nu_e(L) + \bar{\nu}_\mu(R)$$

where (L) and (R) indicates the handedness respectively.

However, C converts neutrinos into antineutrinos and vice versa, without affecting the handedness. Hence applying C to reaction (1) and (2) yields:

C-transformed (1):
$$\mu^+ \rightarrow e^+ + \nu_e(R) + \bar{\nu}_{\mu}(L)$$

C-transformed (2):
$$\mu^- \rightarrow e^- + \bar{\nu}_e(L) + \bar{\nu}_\mu(R)$$

which each contains unphysical neutrinos and antineutrinos with the incorrect handedness. Hence reactions (1) and (2) provide evidence for the non-invariance of C.

However, the combined CP operation changes left-handed neutrinos into right-handed antineutrinos and vice versa, both of which participate in weak interactions; and hence CP converts reaction (1) into reaction (2) and vice versa. So the existence of the two reactions is consistent with the invariance of CP.

Question 3 (a)

Decay of $D^+(c\bar{d})$ meson $\bigwedge^{\prime} K^-\pi^+\pi^+$

Diagram 1: $D^+ \rightarrow K^- \pi^+ \pi^+$

Diagram 2: $D^+ \rightarrow K^+\pi^-\pi^+$

By Cabibbo theory, the quark W^+ coupling has a factor of $\cos\theta_c$ if the 2 quark flavours involved come from the same generation (i.e. c with s, u with d) but a "suppressed" factor of $\sin\theta_c$ if the 2 quark flavours come from different generations (i.e. c with d, u with s). Hence from diagram 1, $D^+ \to K^-\pi^+\pi^+$ decay mode, the decay rate will be proportional to $\cos^4\theta_c$ whereas from diagram 2, $D^+ \to K^+\pi^-\pi^+$ decay mode, the decay rate will be proportional to $\sin^4\theta_c$.

$$\therefore \text{ Rate of } \frac{D^+ \to K^- \pi^+ \pi^+}{D^+ \to K^+ \pi^- \pi^+} \approx \left(\frac{\cos \theta_c}{\sin \theta_c}\right)^4 \approx 20^2 = 400 \text{ times!}$$

Question 3 (b)

(i)
$$B_s^0(\bar{b}s) \rightarrow J/_{\psi}(c\bar{c}) + \phi(s\bar{s})$$

(ii)
$$B_s^0(\bar{b}s) \to \pi^+\pi^-$$

From CKM matrix, $V_{cb}=0.0410$ whereas $V_{ub}=0.00347$ $V_{us}=0.2253$

Since rate of $B_s^0(\bar{b}s) \to J/_{\psi}(c\bar{c}) + \phi(s\bar{s})$ will incur factors of $|V_{cb}|^2 |V_{cs}|^2$ while rate of $B_s^0(\bar{b}s) \to \pi^+\pi^-$ will incur factors of $|V_{ub}|^2 |V_{us}|^2$, the values of the $|V_{ij}|^2$ tell us that rate of $B_s^0(\bar{b}s) \to J/_{\psi}(c\bar{c}) + \phi(s\bar{s}) \gg B_s^0(\bar{b}s) \to \pi^+\pi^-$.

Question 3 (c)

Question 4 (a)

Question 4 (b)

$$M = -\frac{g_e^2}{(p_1-p_3)^2} \big[\bar{u}^{(s_3)}(p_3) \gamma^\mu u^{(s_1)}(p_1) \big] \big[\bar{u}^{(s_4)}(p_4) \gamma_\mu u^{(s_2)}(p_2) \big] + \frac{g_e^2}{(p_1-p_4)^2} \big[\bar{u}^{(s_4)}(p_4) \gamma^\mu u^{(s_1)}(p_1) \big] \big[\bar{u}^{(s_3)}(p_3) \gamma_\mu u^{(s_2)}(p_2) \big]$$

Question 4 (c)

Solutions provided by:

Prof. Teo Kien Boon (Questions 1a, 2b-c, 3a-b, 4b)

Bong Kok Wei (Questions 1b-2a)