NATIONAL UNIVERSITY OF SINGAPORE

PC4246 Quantum Optics

(Semester I: AY 2015-16)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1 Please write your student number only on the answer book. Do not write your name.
- 2 This assessment paper contains 3 questions and comprises 3 printed pages (including this page).
- 3 Students are required to answer ALL questions.
- 4 The answers are to be written with ink pen only (no pencil).
- 5 This is a CLOSED BOOK examination.
- 6 Students should write the answers for each question on a new page.
- 7 The total mark is 40.
- 8 Mark for each question is shown in square bracket.
- 9 Programmable calculators are NOT allowed.

Q1. A linearly polarized mono-mode laser light propagating in vacuum is incident on a quarter wave plate as shown in the Figure 1. The laser has an output power of 30 mW and a beam waist diameter of 4 mm. Neglect any divergence of the beam. Based on this information answer the following questions: [15 marks]

Figure 1: (a) The optical circuit with input laser beam (E_{in}) passing through a Quarter Wave Plate (QWP) generates output beam (E_{out}) . The output propagates through a Polarizing Beam Splitter (PBS) and finally detected by two detectors D1 and D2. (b) The orientation of the principle axes (o and e) of a QWP is shown with respect to the incoming beam polarization $(\hat{E_{in}})$.

- A. Write down the expression for the classical electric field of the laser at the input of the optical system.
- B. Starting from the working principle of a general wave plate (birefringent material), calculate the angle θ of the quarter wave plate for which the laser beam coming out of the quarter wave plate will have pure circular polarization (either right or left).
- C. Now consider the quantum state of the laser to be single mode coherent state. Write down the complete electric field operator in terms of plane wave components.
- D. In continuation of the above question [C], derive the expectation value of the electric field and show that it is similar to a classical field.
- E. Calculate the output intensities (with proper units) as observed by the detectors D1 and D2 placed at the output of the polarizing beam splitter (PBS).

- Q2. Consider any mono-mode arbitrary pure quantum state of light $|\psi\rangle$. Absorption of a single photon produces a state $|\tilde{\psi}\rangle = a |\psi\rangle$. Remember $\bar{n} = \langle \psi | \hat{n} | \psi \rangle$ and $\bar{n} = \langle \tilde{\psi} | \hat{n} | \tilde{\psi} \rangle$ respectively. [15 marks]
 - A. What is the mean photon number for the state $|\psi\rangle$? [HINT: Use the Fock state basis to express any arbitrary state]
 - B. Normalize the state $|\tilde{\psi}\rangle$.
 - C. Derive the expression for the mean photon number in the normalized state of $|\tilde{\psi}\rangle$ as a function of ψ . [HINT: Use commutator relation $[a, a^{\dagger}] = 1$]
 - D. From the result of question [C] infer whether $\bar{n} = \bar{n} 1$. Comment on the outcome of the result.
 - E. Consider a pure equal superposition mono-mode state of vacuum and 8-photon Fock state $|\psi\rangle=1/\sqrt{2}(|0\rangle+|8\rangle$. Calculate the mean photon number in the states $|\psi\rangle$ and $|\tilde{\psi}\rangle=a\,|\psi\rangle$. Compare this result with the previous result obtained in question [D].
- Q3. The following questions are based on first and second order coherence of light field: [10 marks]
 - A. Prove that thermal state of light has second order coherence of 2.
 - B. Derive the first and second order coherences for the following two states:

a.
$$|\psi\rangle = C_0 |0\rangle + C_1 |1\rangle$$

b. $\rho = |C_0|^2 |0\rangle + |C_1|^2 |1\rangle$
where $|C_0|^2 + |C_1|^2 = 1$.

C. Comment on the result obtained in [B].

END OF	PAPER
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[MM]