NATIONAL UNIVERSITY OF SINGAPORE

PC4248 RELATIVITY

(Semester I: AY 2013–14)

Examiner: Assoc Prof Edward Teo

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. Write your matriculation number only. Do not write your name.
- 2. This examination paper contains **FOUR** questions and comprises **THREE** printed pages.
- 3. Answer **ALL** questions.
- 4. Please start each question on a new page.
- 5. This is a **closed book** examination.
- 6. Students are allowed to bring in one A4-sized double-sided help sheet.

- 1. Let S and S' be inertial frames of reference, with S' obtained from S by a boost in the +x-direction with speed v (0 < v < 1). Suppose there is a light source which is at rest in S', emitting photons isotropically in all directions.
- (a) Consider a photon in S' with energy E', moving in the (x', y')-plane at an angle θ' with respect to the +x'-axis. Show that in S, the corresponding energy and angle of the photon are given by

$$E = \frac{E'(1 + v\cos\theta')}{\sqrt{1 - v^2}}, \qquad \cos\theta = \frac{\cos\theta' + v}{1 + v\cos\theta'}.$$

- (b) For a photon moving in the +x'-direction, calculate its frequency as seen in S in terms of its original frequency in S'. Does this correspond to a redshift or a blueshift? [Hint: Recall Planck's equation $E = h\nu$ for photons.]
- (c) Now assume v is close to one. For the photons that are emitted in the forward direction, i.e., $\theta' < \frac{\pi}{2}$, show that they will appear in \mathcal{S} to be concentrated in a narrow cone about $\theta = 0$. Analyse and describe what happens to the photons which are emitted in the *backward* direction, i.e., $\frac{\pi}{2} < \theta' \leq \pi$.
- 2. (a) Verify directly that if $\Gamma_{bc}^a = \frac{1}{2}g^{ad}(\partial_b g_{cd} + \partial_c g_{db} \partial_d g_{bc})$, then $\nabla_a g_{bc} = 0$. Thus show that $\nabla_a g^{bc} = 0$.
 - (b) Show that if an arbitrary tensor $T_{bc\cdots}$ satisfies $\nabla_a T_{bc\cdots} = 0$, then $\nabla_a T^{bc\cdots} = 0$.
 - (c) Explain why the condition $R_{ab} = 0$ for a Ricci-flat spacetime does not imply that $R_{abcd} = 0$. Show, however, that $\nabla^a R_{abcd} = 0$ for such a spacetime.
 - 3. Consider the three-dimensional spacetime with metric:

$$ds^2 = -dt^2 + dz^2 + [\rho(t)]^2 d\varphi^2.$$

This describes a spacelike cylinder whose radius $\rho(t)$ varies with time.

(Question continued on next page)

- (a) Calculate the Christoffel symbols Γ^a_{bc} .
- (b) Calculate the non-zero components of the Riemann tensor $R_{abc}{}^d = \partial_b \Gamma^d_{ac} \partial_a \Gamma^d_{bc} + \Gamma^e_{ac} \Gamma^d_{be} \Gamma^e_{bc} \Gamma^d_{ae}$.
- (c) Find the condition on $\rho(t)$ such that the geometry is flat, and solve for $\rho(t)$ explicitly. How many independent continuous symmetries does the spacetime possess in this case?
- 4. The Schwarzschild metric describing a black hole is given by

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}).$$

(a) Setting $u = \frac{2m}{r}$, show that null geodesics in the equatorial plane $\theta = \frac{\pi}{2}$ satisfy the equation

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} + u = \frac{3}{2} u^2. \tag{1}$$

(b) Verify that

$$u = \frac{2}{3}$$

is a solution to (1). Describe the significance of this orbit.

(c) Verify that

$$u = \frac{2}{3} - \frac{2}{1 + \cosh \varphi}$$

is also a solution to (1). Sketch this orbit in (r, φ) coordinates and describe its relation to the orbit in part (b).

[Hint: Recall $\sinh x = \frac{1}{2}(e^x - e^{-x}), \cosh x = \frac{1}{2}(e^x + e^{-x}), \cosh^2 x - \sinh^2 x = 1.$]

- END OF PAPER -