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1. The 4-acceleration of a particle is defined to be

_due

Aa
dr ’

where U? is the particle’s 4-velocity and 7 its proper time.

(a) Show that
. . . ’i
A% =44 (ajuj, (auj)u’ + %) ,
where u® is the particle’s 3-velocity, a® its 3-acceleration and v =1/V1 — vlu,.

(b) Show that

A®A, =8 ((aiu,-)2 + “7‘2“) .

(c) Show that A%U, = 0.

2. Consider a two-dimensional surface with metric

ds? (dr? 4+ r2de¢?),

T @22
where 0 < r < oo and 0 < ¢ < 27.

(a) Show that the non-zero Christoffel symbols are
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(b) A vector V¢ = (V",V?) is parallel transported along a curve r = R, from the
point ¢ =0 to ¢ = ¢o. (Here, R and ¢, are constants.) Find the value of R

for which V' remains unchanged as it is parallel transported along the curve.

(c) Is the curve you found in part (b) a geodesic? Explain your reasoning.



3. (a) Starting from the following form of the Riemann tensor:
Rabed = gae(Obl'e, — 0,15, + Ff:crgf = becFZf) ,
show that, in geodesic coordinates,

Rabed = 5(0a04 goe + 060c gad — 0504 gac — 0ade gba) -

(b) Using the result of part (a), verify the identity

Raped + Racap + Raape = 0.

(c) Still in geodesic coordinates, verify the Bianchi identity

veRabcd + chabde + vdRabec =0.

4. Suppose space-time has an extra fifth dimension. The analogue of the Schwarz-

schild solution in this case is

2 2my\ -1
ds” = —(1- 23) e+ (1= Z) 7 dr? +2(d0° + sin® 0 d? + cos 0.dy?)
where 1 is the extra (angular) coordinate.

(a) Use the Lagrangian formalism to derive the geodesic equation for 0, and show

that it is possible for a geodesic to lie entirely in the equatorial plane § = /2.

(b) Derive the remaining geodesic equations governing the motion of a timelike

particle in the equatorial plane.
c) By writing the geodesic equation for 7 in the form
g 8
i =E2 - V(r)

and analyzing the function V(r) for r > 0, show that there are no stable

timelike particle orbits in the equatorial plane.
(ET)
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