NATIONAL UNIVERSITY OF SINGAPORE

PC4248 RELATIVITY

(Semester I: AY 2010-11)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains $\underline{\mathbf{3}}$ questions and comprises $\underline{\mathbf{3}}$ printed pages.
- 2. Answer ALL 3 questions.
- 3. Answers to the questions are to be written in the answer books.
- 4. All questions carry equal marks.
- 5. This is a CLOSED BOOK examination.

Useful formulas

- (a) You may use the natural units: G=1 and c=1.
- (b) The metric for Minkowski spacetime with Cartesian coordinates is $\eta_{uv}=\mathrm{diag}\{-1,1,1,1\}\,.$
- (c) The Christoffel symbols are defined as

$$\Gamma^{\alpha}_{\beta\gamma} \equiv \frac{1}{2} g^{\alpha\delta} \left(\partial_{\gamma} g_{\delta\beta} + \partial_{\beta} g_{\delta\gamma} - \partial_{\delta} g_{\beta\gamma} \right)$$

(d) The Riemann curvature tensor is defined as

$$R^{\alpha}_{\beta\gamma\delta} \equiv \partial_{\gamma}\Gamma^{\alpha}_{\beta\delta} - \partial_{\delta}\Gamma^{\alpha}_{\beta\gamma} + \Gamma^{\alpha}_{\gamma\varepsilon}\Gamma^{\varepsilon}_{\delta\delta} - \Gamma^{\alpha}_{\delta\varepsilon}\Gamma^{\varepsilon}_{\beta\gamma}$$

(e) Schwarzschild geometry is given by

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

(f) Kerr geometry is given by

$$ds^{2} = -\left(1 - \frac{2Mr}{\rho^{2}}\right)dt^{2} - \frac{4Mar\sin^{2}\theta}{\rho^{2}}d\phi dt + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2}$$

$$+\left(r^{2} + a^{2} + \frac{2Ma^{2}r\sin^{2}\theta}{\rho^{2}}\right)\sin^{2}\theta d\phi^{2}$$
with $a = \frac{J}{M}$, $\rho^{2} = r^{2} + a^{2}\cos^{2}\theta$, $\Delta = r^{2} - 2Mr + a^{2}$

(g) Table of integrals

$$\int \frac{udu}{\sqrt{1 - u^2}} = -\sqrt{1 - u^2}$$

$$\int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1} u$$

$$\int \frac{du}{u\sqrt{1 - u^2}} = -\ln \frac{1 + \sqrt{1 - u^2}}{u}$$

$$\int \frac{du}{(1 + u)\sqrt{1 - u^2}} = -\sqrt{\frac{1 - u}{1 + u}}$$

$$\int \frac{u^2 du}{\sqrt{1 - u^2}} = -\frac{1}{2}u\sqrt{1 - u^2} + \frac{1}{2}\sin^{-1} u$$

1. Calculate the deflection of light, $\delta\phi_{\rm def} \equiv \Delta\phi - \pi$, when a light ray is grazing the edge of the Sun.

Express your results in terms of solar mass M_{\odot} and solar radius R_{\odot} .

- 2. Once across the event horizon of a Schwarzschild black hole with mass M, what is the *longest* proper time the observer can spend before being destroyed in the singularity?
- 3. An *exact* gravitational plane wave solution to Einstein's field equation has the line metric

$$ds^{2} = -2dudv + a^{2}(u)dx^{2} + b^{2}(u)dy^{2}$$
,

where a and b are functions of u.

- (a) Calculate the Christoffel symbols.
- (b) Calculate the Ricci curvature tensors.
- (c) Use Einstein's equation in vacuum to derive equations obeyed by a(u) and b(u).
- (d) Show that an exact solution can be found, in which both a and b are determined in terms of an *arbitrary* function f(u).

[hint: 2dudv = dudv + dvdu.]

(WQh)

---- End of Paper -----