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(1) The symplectic manifold M associated with a particle that is con-
strained to move in one spatial dimension is characterized by the sym-
plectic form

w = dx Ndp
where z denotes the spatial coordinate and p the momentum coordi-
nate. For a system with Hamiltonian H, the Hamiltonian vector field

Vi is defined through
w(VH) = dI”JT

Given that the Hamiltonian of the system is

H= }é (p2 + (1’2932)

where a is a constant, answer the following questions:

(a) Write down the equations of the integral curves associated with
Vi

(b} Solve the system of equations, given that at time ¢ = 0, the po-
sition and the momentum of the particle is z = zy and p = pg
regpectively.

(¢} Is Vi a complete vector field? Explain.

(d) Furnish the local one-parameter group of local diffeomorphisms
associated with Vpg.

(e) Skow that the diffeomorphisms found in part {1d) constitute an
abelian group.



(2a) A diffeomorphism F of a Riemannian manifold (M, g) into itself is
conformal if

Fg=1{-g

where () is a non-singular function on the manifaold.

(i) Show that the set of conformal diffeomorphisms form a group.
(ii) In a coordinate chart, if ¥ — 2 = F#(x) is a conformal diffeo-
morphism, show that the following holds:
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(2b) A conformal Killing vector field V satisfies
Lyg=10-g.

(iii) If g is the Minkowski metric, g = diag(~1, 1,1, 1), show that the
components of V satisfy
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(iv) By suitable contractions with the metric tensor, show that the
expression in part (iii) reduces to

i
0V + 0,V = 503V g,

where g, = §/0z".



(3a) On a manifold M, show that the following expression holds:
d6(X,Y) = X(O(Y)) - Y (0(X)) - 0(]X, Y])
where 8 is a one-form and X, Y are smooth vector fields.

(3b) If M is a group manifold and {6°} .=y 2, awir I8 a set of one-forms
that are dual to the left-invariant vector fields {_Ea}ﬂl=1,2’___(}in1( Ay, in the
sense

<9a7Eb> = 533

then show that the expression in part (3a) for § = 6¢ is equivalent to
1
4o+ = > Co0° N 6° =0
2 a,b

Here O, are the structure constants of the Lie algebra |E,, Ey| = C%E...

(3¢} The closure relation ¥ : G x G — @ for the group G of collinear
transformations of the real line, is given by

(3, fa; a1, c2) = {1, 7o)
where
71 = fhag, Yo = Prog + Do, oy, B # 0.

The corresponding set of left-invariant vector fields {E,},=1 5 and left-
invariant one-forms {6%},.;» are given by
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(i) Show that the duality conditions between the set of left-invariant
vector fields and the forms are satisfied.

B =

(ii) Show that the expression in part (3b), relating the one-forms,
holds for the case considered here.
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