NATIONAL UNIVERSITY OF SINGAPORE

PC4274 MATHEMATICAL METHODS IN PHYSICS III

(Semester II: AY 2010-11)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains 3 questions and comprises 4 printed pages including this page.
- 2. Answer ALL THREE (3) questions.
- 3. All questions carry equal marks.
- 4. Answers to the questions are to be written in the answer books.
- 5. This is a CLOSED BOOK examination.
- 6. One Help Sheet (A4 size, both sides) is allowed for this examination.

PC4274 - Mathematical Methods III

(1) Consider the 2-sphere, \mathcal{M} , defined by points $(x, y, z) \in \mathbb{R}^3$ that are constrained by the equation,

$$x^2 + y^2 + z^2 = 1.$$

 \mathcal{N} is another 2-dimensional manifold which is defined by points $(u, v, w) \in \mathbf{R}^3$ such that

$$\frac{u^2}{a^2} + \frac{v^2}{b^2} + \frac{w^2}{c^2} = 1, \quad a, b, c \in \mathbf{R}.$$

Points in $\mathcal M$ are mapped into $\mathcal N$ through the map $\mathcal F:\mathcal M\to\mathcal N$ which is defined by

$$x \to u = a \cdot x, \qquad y \to v = b \cdot y, \qquad z \to w = c \cdot z.$$

A chart (U, ϕ) of \mathcal{M} is given by considering the open set $U = \mathcal{M} \setminus \{0, 0, 1\}$ and stereographically mapping the points to the x - y plane, *i.e.*,

$$\phi: (x, y, z) \in U \longrightarrow (X, Y) \in \mathbf{R}^2.$$

Similarly, one can also define a chart for \mathcal{N} , $(V, \tilde{\phi})$, by stereographically projecting points $V = \mathcal{N} \setminus \{0, 0, c\}$ to the u - v plane. In connection with this, answer the following questions:

- (a) Evaluate the the projective coordinates of \mathcal{M} and \mathcal{N} relative to the charts ϕ and $\widetilde{\phi}$ respectively.
- (b) Provide an explicit realization of the induced map $\overline{\mathcal{F}}:\phi(U)\to\widetilde{\phi}(V).$
- (c) A vector field K on \mathcal{M} is realized by

$$\overline{K} = \phi_* K = X \frac{\partial}{\partial Y} - Y \frac{\partial}{\partial X}$$

in its local chart. Evaluate the push-forward of \overline{K} relative to $\overline{\mathcal{F}}$.

- (d) Evaluate the integral curve C, corresponding to \overline{K} .
- (e) Show that $\widetilde{\mathcal{C}}=\overline{\mathcal{F}}\circ\mathcal{C}$ is the integral curve associated with $\widetilde{K}=\overline{\mathcal{F}_*K}$.

(2) On an N-dimensional Riemannian manifold \mathcal{M} with metric tensor

$$g = e^1 \otimes e^1 + e^2 \otimes e^2 + \dots + e^N \otimes e^N,$$

where $\{e^i\}_{i=1,2,\dots,N}$ constitutes a basis of 1-forms, one defines the affine spin connection one-form ω^a_b through

$$de^a + \omega^a_{\ b} \wedge e^b = 0$$

and the curvature two-form $R^a_{\ b}$ as

$$R^a_b = d\omega^a_b + \omega^a_c \wedge \omega^c_b$$

In connection with this, consider the 2-sphere (S^2) with a metric tensor given by

$$g = d\theta \otimes d\theta + \sin^2 \theta d\phi \otimes d\phi$$

where (θ, ϕ) are the usual spherical coordinates of the sphere.

- (a) Evaluate $\omega^a_{\ b}$ and $R^a_{\ b}$ for the 2-sphere.
- (b) Show that the transformation $e^a \to e'^a = \Phi^a{}_b e^b$, where Φ is a matrix of the form

$$\Phi = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

leaves the metric invariant. Here $\alpha \equiv \alpha(\theta, \phi)$ is an arbitrary smooth function of θ and ϕ .

(c) Show that under the transformation in part (b), the affine spin connection one-form transforms as

$$\omega^a_b \to \omega'^a_b = \omega^a_b + d\alpha.$$

(d) Show that the components of the curvature 2-form remain invariant under the transformation in part (b), *i.e.*,

$$R^a_b \to R'^a_b = R^a_b$$
.

(3) A transformation of the form

$$\left(\begin{array}{c} x\\y\\z\end{array}\right) \to \left(\begin{array}{c} x'\\y'\\z'\end{array}\right) = \mathbf{R} \left(\begin{array}{c} x\\y\\z\end{array}\right),$$

where **R** is a 3×3 orthogonal matrix, induces a transformation (\mathcal{F}_R) of S^2 onto itself. Here S^2 is regarded as a surface in \mathbf{R}^3 . For instance, in spherical coordinates, a point characterized by (θ, ϕ) , transforms to (θ', ϕ') under the induced transformation:

$$\mathcal{F}_R: (\theta, \phi) \to (\theta', \phi').$$

In connection with this, consider transformations of the form,

$$\mathbf{R}_z = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{R}_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}.$$

- (a) Furnish the induced transformations \mathcal{F}_{R_z} and \mathcal{F}_{R_x} associated with \mathbf{R}_z and \mathbf{R}_x respectively.
- (b) Show that the Killing vectors associated with \mathcal{F}_{R_z} and \mathcal{F}_{R_x} are given by

$$K_z = \frac{\partial}{\partial \phi}$$
 and
$$K_x = -\sin \phi \frac{\partial}{\partial \theta} - \cot \theta \cos \phi \frac{\partial}{\partial \phi}$$

respectively.

(c) Show that $\mathcal{L}_{K_z}g = 0 = \mathcal{L}_{K_x}g$, where

$$g = d\theta \otimes d\theta + \sin^2 \theta d\phi \otimes d\phi$$

is the metric tensor on S^2 .

(KS)